
6.3 SDP Toolkit Tools—Optional

6.3.1 Digital Elevation Model Tools

6.3.1.1 DEM Access Tools (HDF-based tools)

The Digital Elevation Model (DEM) access tools described in this section were introduced for
the first time in TK 5.2 of the SDP Toolkit. They have been implemented in response to EOS
Science Working Group - AM Platform (SWAMP) and ESDIS requests. These tools are meant to
replace the access tools described in Section 6.3.1.2 for DEM access. The older access tools and
associated ancillary data will continue to be distributed with the Toolkit, as long as there is an
identifiable user requirement for them. Please note that the primary ECS production DEMs will
supplied in HDF-EOS format and will be accessible through the tools in this section. The older
ETOP05 data sets will be accessible in the production system through tools described in Section
6.3.2.

The DEM Toolkit tools in Section 6.3.1.1 are intended for accessing a hierarchy of DEM data
sets. In order to utilize these functions, a user must install the SDP Toolkit on their machine.
This hierarchy of data sets will include data from multiple resolutions. The DEM tools accesses
this information based on resolution; a user indicates from which resolutions they are interested
in query data. Each of these resolutions consists of multiple files. For example, the 3 arc second
resolution data set (~100 m postings) is divided into 648 (10 degree by 10 degree) files. The
number and extent of these files are transparent to the user. The user indicates interest in a
particular resolution with a resolution tag. This resolution tag is initialized by the tool
PGS_DEM_Open. The resolution tags MUST be initialized, either individually or as an array of
the resolution tags, BEFORE any of the other DEM tools may access the data set at that
resolution. These initialized resolution tags allow access of the underlying files (in the case of
the 3 arc second resolution, the 10 degree by 10 degree files), without having to actually specify
the particular physical file.

As mentioned above, the DEM tools may be used with a hierarchy of DEM data sets. Most of
the DEM tools not only are able to accept a single resolution tag, but they may even accept a list,
an array, of resolution tags. The first element of the array is the tag for the preferred resolution of
the data (generally this will be the highest resolution data set). Each successive entry in the array
will be in descending interest of use: in general, lower spatial resolution. If one inputs an array
of resolution tags to a DEM tool, then one may be able to gain information across resolutions.
For example, one may enter an array of resolution tags into the tool PGS_DEM_GetRegion.
This tool will go to the data set files of the first resolution tag and extract the region of interest.
If any of the points in the region of interest is a fill value, then the tool will access the next data
set in the input array (for that particular point). It will continue to step through progressively
lower resolution data sets (depending on the order of the elements in the inputted array) until it
finds "valid", actual, non fill value, data.

The data sets supported by SDP Toolkit 5.2.19 are the 3 arc second (~100 m postings), 15 arc
second (approximately 500m postings), 30 arc second (approximately 1km postings) and 90 arc

 6-291 333-EED-001, Revision 02

second (approximately 3 km postings) resolution data sets. The layer available in all resolutions
is elevation (PGSd_DEM_ELEV) and water/land (PGSd_DEM_WATER_LAND). The 15 arc
second also includes standard deviation elevation (PGSd_DEM_STDEV_ELEV). Other layers
available in both 3 arc second and 30 arc second resolutions are slope (PGSd_DEM_SLOPE),
aspect (PGSd_DEM_ASPECT), standard deviation elevation (PGSd_DEM_STDEV_ELEV),
and standard deviation slope (PGSd_DEM_STDEV_SLOPE). Also all resolutions include geoid
(PGSd_DEM_GEOID). In addition, the 30 arc second data files include quality data such as data
source (PGSd_DEM_SOURCE) and quality metric
(PGSd_DEM_HORIZONTAL_ACCURACY) and PGSd_DEM_VERTICAL_ACCURACY).
All data sets are in HDF-EOS GRID format. The 3 arc second resolution data set is divided into
648 (10 degree by 10 degree) tiles. For each tile there are 2 files, one that includes data for
elevation, land/sea mask, slope, aspect, and geoid, and another file that includes data for the
standard deviations. Only a few tiles are provided at the 3 arc second resolution, as test data. Full
3 arc data set resides at EDC DAAC. The 15 arc second resolution data set divides the Earth's
surface into 24 tiles (2 files per tile as the 3 arc second data set). The 30 arc second resolution
data set divides the Earth's surface into 6 tiles (2 files per tile as the 3 arc second data set). The 90
arc second resolution data covers the entire globe in one tile and includes all the ice shelfs for the
Antarctica that is in the latest Antarctica version from the Radarsat Antarctica Mapping Program
(RAMP). These are delivered with the Toolkit as a provisional data set; updates are possible, for
example to replace regions of fill value with actual data. All resolutions are in a Geographic
Projection. By geographic, we mean that degrees of latitude and longitude are linearly mapped to
row and column pixels, respectively. Please also note that in 15 arc second data real data is not
provided for Elevation and Standard Deviation of Elevation for Greenland and Antarctica. The
values for these regions are fillvalues. For these regions we will make new 30 arc second data
available with the release 5.2.20 or later of TOOLKIT.

To access these data sets, they must be included in the PCF. The files which make up the 30 arc
second resolution should each have a logical ID equal to 10650 for the first file and 10651 for the
second file. The logical ID of the 3 arc second resolution files should be 10653 for the first file
and 10654 for the second file. The logical ID for the 90 arc second resolution file is 10656. The
logical ID of the 15 arc second resolution files should be 10659 for the first file and 10660 for the
second file. For more information on setting up a PCF for DEM access, see both the DEM data
set README file and the PCF template which accompanies Toolkit 5.2.19.

The DEM access tools described in Section 6.3.1.1 are:

PGS_DEM_Open(): Open the DEM

PGS_DEM_Close(): Close the DEM

PGS_DEM_DataPresent(): Check for Valid DEM Data Point

PGS_DEM_SortModels(): Check for Data in a Specified Region of the DEM

PGS_DEM_GetPoint(): Return Data at Specified DEM Points

PGS_DEM_GetRegion(): Return Data from a Specified Region of the DEM

 6-292 333-EED-001, Revision 02

PGS_DEM_GetMetadata(): Extract Metadata from the DEM

PGS_DEM_GetQualityData(): Access DEM Quality Data

PGS_DEM_GetSize(): Return Size of Specified DEM Region

 6-293 333-EED-001, Revision 02

Open the DEM

NAME: PGS_DEM_Open()

SYNOPSIS:

C: #include <PGS_DEM.h>

 PGSt_SMF_status

 PGS_DEM_Open(

PGSt_DEM_Tag resolutionList[],

PGSt_integer numResolutions,

PGSt_integer layerList[],

PGSt_integer numLayers)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

 integer function pgs_dem_open(resolutionList, numResolutions

 layerList, numLayers)

integer resolutionList(*)

integer numResolutions

integer layerList(*)

integer numLayers

DESCRIPTION: This tool initializes a list of resolutions tags which correspond to a series
of DEM data sets. These initialized resolution tags are used by the DEM
tools. A DEM data set includes all the files of a particular resolution.
Presently, only four data sets are available: 3 arc second, 15 arc second ,
30 arc second, and 90 arc second resolutions which correspond to the tags
PGSd_DEM_3ARC, PGSd_DEM_15ARC, PGSd_DEM_30ARC, and
PGSd_DEM_90ARC, respectively. A resolution tag MUST be initialized
before it may be used in any of the other PGS_DEM tools. Each layer
indicated in the layerList will automatically be initialized across all
resolutions in the resolutionList. Note that for 90 arc second resolution the
only available layers are elevation and Land/Water. For 15 arc second

 6-294 333-EED-001, Revision 02

resolution the only available layers are elevation, Land/Water, and
Standard Deviation of Elevation.

INPUTS:

 resolutionList[] -- an array of resolution tags, data sets. See Notes.

 numResolutions -- the number of resolution tags in the array resolutionList

 layerList[] -- the DEM layers to initialize. See Notes.

 numLayers -- the number of DEM Layers in the list.

OUTPUTS: N/A

RETURNS: PGS_S_SUCCESS -- success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_integer numLayers;

 PGSt_integer layerList[2];

 PGSt_integer numResolutions;

 PGSt_DEM_Tag resolutionList[2];

/* initialize input parameters, both resolutions and layer */

 resolutionList[0]= PGSd_DEM_3ARC;

 resolutionList[1]= PGSd_DEM_30ARC;

 numResolutions = 2;

 layerList[0] = PGSd_DEM_ELEV;

 layerList[1] = PGSd_DEM_WATER_LAND;

 numLayers = 2;

/* Open the resolutions and data layer*/

 status = PGS_DEM_Open(resolutionList, numResolutions,
layerList, numLayers);

 if (status != PGS_S_SUCCESS)

 {

/* Do some error handling ... */

 6-295 333-EED-001, Revision 02

FORTRAN:
 integer numLayers

 integer numResolutions

 integer layerList(2)

 integer resolutionList(2)

 integer status

C INITIALIZE

 resolutionList(1) = PGSd_DEM_3ARC

 resolutionList(2) = PGSd_DEM_30ARC

 layerList(1) = PGSd_DEM_ELEV

 layerList(2) = PGSd_DEM_WATER_LAND

numResolutions = 2

 numLayers = 2

 status = pgs_dem_open(resolutionList, numResolutions,

 1 layerList, numLayers)

NOTES: resolutionList:

 For earlier ECS Deliveries and SCF Toolkits 5.2.2-5.2.7, the data sets that
may be inputted are 3 arc second, 30 arc second sets which correspond to
the tags PGSd_DEM_3ARC, PGSd_DEM_30ARC, respectively. The 15
arc sec data can be handeled with SCF Toolkits 5.2.18 and higher.

 layerList:

For ECS Deliveries Drop 4 and later, the only layer that may be inputted
for the 3 arc and 30 arc second resolution are elevation,
(PGSd_DEM_ELEV), water/land (PGSd_DEM_WATER_LAND),
standard deviation elevation (PGSd_DEM_STDEV_ELEV), slope
(PGSd_DEM_SLOPE), standard deviation slope
(PGSd_DEM_STDEV_SLOPE), and aspect (PGSd_DEM_ASPECT). The
other layers that will be available are topographical obscuration
(PGSd_DEM_TOP_OBSC). and topographical shadow
(PGSd_TOP_SHAD). For 90 arc second resolution the only available
layers are elevation, and water/land. For 15 arc second resolution the only
available layers are elevation, water/land, and Standard deviation of
Elevation..

REQUIREMENTS: PGSTK–0940

 6-296 333-EED-001, Revision 02

Close the DEM

NAME: PGS_DEM_Close()

SYNOPSIS:

C: #include <PGS_DEM.h>

PGSt_SMF_status

PGS_DEM_Close(

PGSt_DEM_Tag resolutionList[],

PGSt_integer numResolutions,

PGSt_integer layerList[],

PGSt_integer numLayers)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

 integer function pgs_dem_close(resolutionList, numResolutions

 1 layerList, numLayers)

integer resolutionList(*)

integer numResolutions

integer layerList(*)

integer numLayers

DESCRIPTION: This tool closes the session begun by the tool PGS_DEM_Open. One can
close multiple data set sessions simultaneously or independently. If one
wants to only close one DEM data set, the array resolutionList should only
contain an individual resolution tag. Presently, only four data sets are
available: 3 arc second (small test data set), 15 arc second , 30 arc second
(provisional global data), and 90 arc second resolutions which correspond
to the tags PGSd_DEM_3ARC, PGSd_DEM_15ARC ,
PGSd_DEM_30ARC, and PGS_DEM_90ARC respectively. Each layer in
the layerList will automatically be closed across all the resolutions
indicated in the resolutionList.

 6-297 333-EED-001, Revision 02

INPUTS: resolutionList[] - an array of resolution tags, data sets. See Notes to
PGS_DEM_Open().

 numResolutions - the number of resolution tags in the array resolutionList.

 layerList[] - the number of DEM Layers to initialize. See Notes to
PGS_DEM_Open().

 numLayers - the number of DEM Layers in the list.

OUTPUTS: N/A

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_integer numLayers;

 PGSt_integer layerList[2];

 PGSt_integer numResolutions;

 PGSt_DEM_Tag resolutionList[2];

/* initialize input parameters, both resolutions and layer */

 resolutionList[0]= PGSd_DEM_3ARC;

 resolutionList[1]= PGSd_DEM_30ARC;

 numResolutions = 2;

 layerList[0] = PGSd_DEM_ELEV;

 numLayers = 1;

/* Close the resolutions and data layer*/

 status = PGS_DEM_Close(resolutionList, numResolutions,
layerList, numLayers);

 6-298 333-EED-001, Revision 02

FORTRAN:

 integer numLayers

 integer numResolutions

 integer layerList(2)

 integer resolutionList(2)

 integer status

C INITIALIZE

 resolutionList(1) = PGSd_DEM_3ARC

 resolutionList(2) = PGSd_DEM_30ARC

 layerList(1) = PGSd_DEM_ELEV

 numResolutions = 2

 numLayers = 1

 status = pgs_dem_close(resolutionList, numResolutions,

 1 layerList, numLayers)

REQUIREMENTS: PGSTK–0948

 6-299 333-EED-001, Revision 02

Check for Valid DEM Data Point

NAME: PGS_DEM_DataPresent()

SYNOPSIS:

C: PGSt_SMF_status

 PGS_DEM_DataPresent(

 PGSt_DEM_Tag resolution,

 PGSt_integer layer,

 PGSt_integer positionCode,

 PGSt_double pntLatitude[],

 PGSt_double pntLongitude[],

 PGSt_integer numPoints,

 PGSt_boolean *dataPresent)

FORTRAN: include <PGS_SMF.f>

 include <PGS_DEM.f>

 include <PGS_DEM_14.f>

 include <PGS_MEM_7.f>

 integer function pgs_dem_datapresent(resolution, layer,

 1 positionCode, pntLatitude, pntLongitude, numPoints, dataPresent)

 integer resolution

 integer layer

 integer positionCode

 double precision pntLatitude(*)

 double precision pntLongitude(*)

 integer numPoints

 integer dataPresent

 6-300 333-EED-001, Revision 02

DESCRIPTION: This tool checks whether pixel(s), at specified latitude(s) and longitude(s),
are data or fill values. In dataPresent, either PGS_TRUE or PGS_FALSE
will be returned, corresponding to valid data or fill value, respectively.

INPUTS: resolution - the resolution tag for a particular data set. An element of the
array resolutionList which is initialized by PGS_DEM_Open. See Notes
to PGS_DEM_Open().

 layer - indicates which data mask or layers one is accessing. See Notes.

 positionCode - flag indicating the format of the position inputs,
pntLatitude and pntLongitude. See Notes.

 pntLatitude[] and pntLongitude[] - the latitude and longitude of the
point(s) of interest. See Notes.

 numPoints - the number of points to be queried.

OUTPUTS: dataPresent - either PGS_TRUE or PGS_FALSE. PGS_TRUE indicates
that a “valid” data value is at the specific location(s). PGS_FALSE
indicates that there is a fill value in the extracted data.

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_SMF_status status;
PGSt_integer layer;
PGSt_DEM_Tag resolution;
PGSt_integer numDataPoints;
PGSt_boolean dataPresent;
PGSt_double pntLatitude[3];
PGSt_double pntLongitude[3];

/* initialize input parameters, both resolutions and layer */

 resolution= PGSd_DEM_3ARC;

 layer = PGSd_DEM_ELEV;

/* initialize the number of data points and pick position of points one
interested in. In this case, positions are in signed
decimal degrees */

 6-301 333-EED-001, Revision 02

 numDataPoints = 3;

 pntLatitude[0] = 40.05;

 pntLongitude[0] = -105.3

/*see if selected points have real data*/

 status = PGS_DEM_DataPresent(resolution, layer,
PGSd_DEM_DEGREE, pntLatitude, pntLongitude, numDataPoints,
&dataPresent);

FORTRAN:

 integer layer

 integer resolution

 integer status

 integer numDataPoints

 integer dataPresent

 double precision pntLatitude(3)

 double precision pntLongitude(3)

C INITIALIZE resolution and layers

 resolution = PGSd_DEM_3ARC

 layer = PGSd_DEM_ELEV

C INITIALIZE points of interest. in this case, in signed decimal degrees

 numDataPoints = 3

 pntLatitude(1) = 40.04

 pntLongitude(1) = -105.3

 status = pgs_dem_datapresent(resolution, layer,

 1 PGSd_DEM_DEGREE, pntLatitude, pntLongitude,

 1 numDataPoints, dataPresent)

 6-302 333-EED-001, Revision 02

NOTES: layer:

 See NOTES for layerList of PGS_DEM_OPEN.

positionCode:

The position inputs may be either in signed, decimal degree format or in
global pixel format, which correspond to the flags PGSd_DEM_DEGREE
and PGSd_DEM_PIXEL, respectively. NOTE: global pixel format is the
pixel coordinates of a point in the coordinate system for the whole world.
This is NOT the same as pixels inside a single HDF-EOS GRID. The
pixel coordinate system is unique for each resolution. The origin of all the
pixel coordinate systems is the North, West corner of the globe (180W,
90N). The coordinate system is zero based. The 15 arc second resolution
has 86400 pixels spanning from 180 West to 180 East, and 43200 pixels
spanning from North Pole to South Pole. The 30 arc second resolution has
43200 pixels spanning from 180 West to 180 East and 21600 pixels
spanning from North Pole to South Pole. The 3 arc second resolution has
432000 pixels spanning from 180 West to 180 East and 216000 pixels
spanning from North Pole to South Pole. The 90 arc second resolution has
14400 pixels spanning from 180 West to 180 East and 7200 pixels
spanning from North Pole to South Pole.

 pntLatitude and pntLongitude:

Each longitude point MUST have a corresponding latitude point. The
latitude(s) and longitude(s) will be in either signed, decimal degree format
or global pixel format, corresponding to the flag indicated by
positionCode. If the user is using the flag PGSd_DEM_PIXEL, they
should be aware that the values for pntLatitude and pntLongitude will be
truncated. In other words, if the user passed in a pixel position which had
any decimal information, that information would NOT be used in
accessing the data. For example, if the user passed in 1267.34 as a pixel
position, it would be truncated to 1267.

REQUIREMENTS: PGSTK–0941

 6-303 333-EED-001, Revision 02

Check for Data in a Specified Region of the DEM

NAME: PGS_DEM_SortModels()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_SortModels(

 PGSt_DEM_Tag resolutionList[],

 PGSt_integer numResolutions,

 PGSt_integer layer,

 PGSt_integer positionCode,

 PGSt_double latitude[2],

 PGSt_double longitude[2],

 PGSt_DEM_Tag *completeDataSet)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

#include <PGS_DEM_14.f>

#include <PGS_MEM_7.f>

integer function pgs_dem_sortmodels(resolutionList,numResolutions,

 1 layer, positionCode, latitude, longitude, completeDataSet)

 integer resolutionList(*)

 integer numResolutions

 integer layer

 integer positionCode

 double precision latitude(2)

 double precision longitude(2)

 integer completeDataSet

DESCRIPTION: This tool will check the DEM data sets for complete data in a rectangular
region defined by the latitude/longitude pair specified (i.e., upper left hand

 6-304 333-EED-001, Revision 02

corner, lower right hand corner). If there are fill values at any of the points
in the defined region, then the tool will query the next resolution tag in the
array for that region. The first DEM data set to have complete data in the
region of interest will have its corresponding resolution tag returned in
completeDataSet. If none of the data sets in the input array is "complete",
then the PGSd_DEM_NO_COMPLETE_DATA will be returned.

INPUTS: resolutionList[] - an array of resolution tags, data sets. See Notes to
PGS_DEM_Open().

 numResolutions - the number of resolution tags in the array resolutionList

 layer - indicates which data mask one is accessing. See Notes to
PGS_DEM_DataPresent().

 positionCode - flag indicating the format of the position inputs, latitude
and longitude. See Notes to PGS_DEM_DataPresent().

 latitude[2] and longitude [2] - the bounding latitudes and longitudes of the
region of interest. See Notes.

OUTPUTS: completeDataSet - pointer to a resolution tag, data set identifier. The first
DEM data set to have complete data in the region of interest will be
returned. If none of the resolution tags in the inputted array is "complete",
then the PGSd_DEM_NO_COMPLETE_DATA will be returned.

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_SMF_status status;

 PGSt_integer layer;

 PGSt_DEM_Tag resolutionList;

 PGSt_integer numResolutions;

 PGSt_integer completeData;

 PGSt_double latitude[2];

 PGSt_double longitude[2];

/* initialize input parameters, both resolutions and layer */

 resolutionList[0]= PGSd_DEM_3ARC;

 6-305 333-EED-001, Revision 02

 resolutionList[1] = PGSd_DEM_30ARC;

 layer = PGSd_DEM_ELEV;

/* initialize the upper left and lower right corners of the data region.. In
this case, positions are in signed decimal degrees */

/*upper left corner*/

 latitude[0] = 44.0;

 longitude[0] = -80.0;

/*lower right corner*/

 latitude[1] = 43.0;

 longitude[1] = -79.0;

/* see if region has real data */

 status = PGS_DEM_SortModels(resolutionList, numResolutions,
layer, PGSd_DEM_DEGREE, latitude, longitude, &completeData);

 if (status!= PGS_S_SUCCESS)

/* Do some error handling ...*/

 else

/* compare complete data set to the three possibilities to find resolution
which has complete data across this region.

*/

 if (completeData == PGSd_DEM_3ARC)

/* complete region found in 3 arc second resolution */

 }

 else if (completeData == PGSd_DEM_30ARC)

 {

/* complete region in 30 arc second resolution */

...

 }

 else if (completeData == PGSd_DEM_NO_COMPLETE_DATA)

 6-306 333-EED-001, Revision 02

 {

/* all resolutions contained fill values within this region */

...

 }

FORTRAN:

 integer status

 integer layer

 integer resolutionList

 double precision latitude(2)

 double precision longitude(2)

C initialize input parameters, both resolutions and layer

 resolutionList(1)= PGSd_DEM_3ARC

 resolutionList(2) = PGSd_DEM_30ARC

 layer = PGSd_DEM_ELEV

C initialize the upper left and lower right corners of the data

C region.. In this case, positions are in signed decimal degrees

C upper left corner

 latitude(1) = 44.0

 longitude(1) = -80.0

C lower right corner

 latitude(2) = 43.0

 longitude(2) = -79.0

C see if region has complete data

 status = pgs_dem_sortmodels(resolutionList,

 1 numResolutions, layer, PGSd_DEM_DEGREE, latitude, longitude,
completeData)

 if (status.NE.PGS_S_SUCCESS) then

 6-307 333-EED-001, Revision 02

C Do some error handling

 else

C compare completeData to determine the resolution with complete data

C in the specified region

 if (completeData.EQ.PGSd_DEM_3ARC) then

C complete data in 3 arc second resolution

....

 elseif (completeData.EQ.PGSd_DEM_30ARC) then

C complete data found in 30 arc second resolution

...

 elseif (completeData.EQ.PGSd_DEM_NO_COMPLETE_DATA) then

C all resolutions contained fill values within this

C region

NOTES: latitude and longitude:

 The first point corresponds to the upper left corner of the rectangular
region, and the second point correspond to the lower right corner of the
rectangular region. The latitude(s) and longitude(s) will be in either
signed, decimal degree format or global pixel format, corresponding to the
flag indicated by positionCode. If the user is using the flag
PGSd_DEM_PIXEL, she or he should be aware that the values for latitude
and longitude will be truncated. In other words, if the user passed in a
pixel position which had any decimal information, that information would
NOT be used in accessing the data. For example, if the user passed in
1267.34 as a pixel position, it would be truncated to 1267.

REQUIREMENTS: PGSTK–0942

 6-308 333-EED-001, Revision 02

Return Data at Specified DEM Points

NAME: PGS_DEM_GetPoint()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_GetPoint(

 PGSt_DEM_Tag resolutionList[],

 PGSt_integer numResolutions

 PGSt_integer layer,

 PGSt_integer positionCode,

 PGSt_double pntLatitude[],

 PGSt_double pntLongitude[],

 PGSt_integer numPoints

 PGSt_integer interpolation,

 void *interpValues)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

integer function pgs_dem_getpoint(resolutionList, numResolutions, layer,
positionCode, pntLatitude, pntLongitude, numPoints, interpolation,
interpValue)

integer resolutionList(*)

integer numResolutions

integer layer

 integer positionCode

 double precision pntLatitude(*)

 double precision pntLongitude(*)

 6-309 333-EED-001, Revision 02

 integer numPoints

 integer interpolation

 ‘user defined’ interpValue(*)

DESCRIPTION: This tool attempts to return the data value(s) of the point(s) defined by
latitude and longitude. If the latitude and longitude do not exactly
correspond to the center (or corner, depending on the manner in which the
DEM map has been constructed) of a pixel, the value will be interpolated.
Presently, there are only two interpolation methods supported: nearest
neighbor and bilinear interpolation. If at this point there is a "hole", a fill
value, in the data set, then the tool will access the next resolution tag in the
input array. It will continue to step through progressively lower resolution
data sets (depending on the order of the elements in the inputted array)
until it finds actual data for that point. If all of the DEM data sets have a
"hole" at this particular location, then the
PGSDEM_M_FILLVALUE_INCLUDED will be returned. Even if some
of the queried points are not able to be interpolated (i.e. at the lowest
resolution that region is fill value), the value, interpolated value or fill
value of the point(s) will be returned in interpValues.

INPUTS: resolutionList - an array of resolution tags, data sets. See Notes to
PGS_DEM_SortModels().

 numResolutions - the number of resolution tags in the array resolutionList

 layer - indicates which data mask one is accessing. See Notes to
PGS_DEM_DataPresent().

 positionCode - flag indicating the format of the position inputs,
pntLatitude and pntLongitude. See Notes to PGS_DEM_DataPresent().

 pntLatitude[] and pntLongitude[] - the latitude and longitude of the point
of interest. See Notes to PGS_DEM_DataPresent().

 numPoints - the number of points to be queried.

 interpolation - type of interpolation. see Notes.

OUTPUTS: interpValues - the data value(s) at the designated latitude(s) and
longitude(s). See Notes.

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

 PGSDEM_M_FILLVALUE_INCLUDED - fill values in the returned data

 6-310 333-EED-001, Revision 02

 PGSDEM_M_MULTIPLE_RESOLUTIONS - data accessed from
multiple resolutions

EXAMPLES:

C:

 PGSt_SMF_status status;

 PGSt_integer layer;

 PGSt_DEM_Tag resolutionList[2];

 PGSt_integer numResolutions;

 PGSt_integer numDataPoints;

 PGSt_double pntLatitude[10];

 PGSt_double pntLongitude[10];

 short dataPoints[10)];

/* NOTE: The type of data buffer should correspond to the type of data that
one is extracting. Presently, the only available data are
PGSd_DEM_ELEV, PGSd_DEM_SLOPE, PGSd_DEM_ASPECT,
PGSd_DEM_STDEV_ELEV, PGSd_DEM_STDEV_SLOPE, and
PGSd_DEM_WATER_LAND which are of type 2 byte, 1 byte, 2
byte, 2 byte, 2 byte, and 2 byte integers, respectively. In
the future, there will be data layers added which are NOT 2
byte or 1 byte integers. If one does not know the data type
of the particular layer, then one should use the tool
PGS_DEM_GetSize.*/

/* initialize input parameters, both resolutions and layer */

 resolutionList[0]= PGSd_DEM_3ARC;

 resolutionList[1] = PGSd_DEM_30ARC;

 layer = PGSd_DEM_ELEV;

/* initialize the location of the points of interest. In this case, positions
are in signed decimal degrees*/

 pntLatitude[0] = 40.05;

 pntLongitude[0] = -105.3;...

 6-311 333-EED-001, Revision 02

 status = PGS_DEM_GetPoint(resolutionList, numResolutions,
layer, PGSd_DEM_DEGREE, pntLatitude, pntLongitude,
numDataPoints, PGSd_DEM_NEAREST_NEIGHBOR, (void
*)dataPoints);

/*Possible status returns*/

 if (status == PGS_S_SUCCESS)

 {

 /*no fill points*/

 ...

 }

 else if (status == PGSDEM_M_FILLVALUE_INCLUDED)

 {

/*fill points included in the extracted data*/

 ...

 }

 else if (status == PGSDEM_M_MULTIPLE_RESOLUTIONS)

 {

/*no fill points in data buffer, fill points interpolated from multiple
resolutions*/

 ...

 }

 else

 {

/*Error in extracting the data */

/* Do some error handling*/

FORTRAN:

 integer status

 integer layer

 6-312 333-EED-001, Revision 02

 integer resolutionList(2)

 integer numResolutions

 integer numDataPoints

 double precision pntLatitude(10)

 double precision pntLongitude(10)

 integer*2 dataPoints(10)

C *** NOTE: The type of data buffer should correspond to the type of

C data one is extracting. Presently, the only available data are

C PGSd_DEM_ELEV, PGSd_DEM_WATER_LAND, PGSd_DEM_SLOPE, PGSd_DEM_ASPECT,

C PGSd_DEM_STD_DEV_ELEV, and PGS_DEM_STDEV_SLOPE which are of type

C 2 byte integers (except for PGSd_DEM_WATER_LAND which is 1 byte

C integer).

C In the future, there will be data layers added which are NOT 2 byte

C or 1 byte integers. If one does not know the data

C type of the particular

C layer, then one should use the tool PGS_DEM_GetSize.

C initialize input parameters, both resolutions and layer

 resolutionList(1)= PGSd_DEM_3ARC

 resolutionList(2) = PGSd_DEM_30ARC

 layer = PGSd_DEM_ELEV

C initialize points of intereset. In this case, location is in signed

C decimal degrees.

 PntLatitude(0) = 40.05

 pntLongitude(0) = -105.3

 status = pgs_dem_getpoint(resolutionList,

 1 numResolutions, layer, PGSd_DEM_DEGREE, pntLatitude,

 6-313 333-EED-001, Revision 02

 1 pntLongitude, numDataPoints,

 1 PGSd_DEM_NEAREST_NEIGHBOR, dataPoints)

C Possible status returns

 if (status .EQ. PGS_S_SUCCESS) then

C no fill values in this region, in the first resolution

 ...

 elseif (status .EQ. PGSDEM_M_FILLVALUE_INCLUDED) then

C fill values included in extracted data

 ...

 elseif (status .EQ. PGSDEM_M_MULTIPLE_RESOLUTIONS) then

C no fill values included in extracted data. All fill values

C interpolated from other resolutions in resolutionList

 else

C Error extracting data

C Do some error handling ...

NOTES: All the 15 arc second, 30 arc second, 3 arc second, and 90 arc second
DEM data are referenced vertically to mean sea level, which is
approximated by the geoid. Thus, the elevation data retrieved by
PGS_DEM_GetPoint tool will be with respect to the mean sea level. To
get height relative to the WGS84 ellipsoid see note for the function
PGS_DEM_GetQualityData.

interpolation:

 Presently there is only one type of interpolation, nearest neighbor,
PGSd_DEM_NEAREST_NEIGHBOR, and bilinear interpolation,
PGSd_DEM_BILINEAR.

 6-314 333-EED-001, Revision 02

 interpValues:

 If the function locates fill values in the extracted data from the first
resolution in the resolutionList, it will attempt to interpolate from the other
resolutions. If the point of interest corresponds to a fill value at the lowest
resolution (the last resolution tag of resolutionList), then this fill value(s)
will be returned.

 The land/water classes are described below:

0. Shallow Ocean (Ocean <5k from coast OR <50m deep; i.e., a buffer zone
around all coastal areas and islands, plus shallow areas up to 50m deep
that are further than 5km from the land). Includes the appropriate parts of
the Black Sea, Red Sea, Mediterranean Sea, Hudson Bay, and other ocean-
connected seas.

1. Land (not anything else).

2. Ocean Coastlines and Lake Shorelines (an actual boundary line).

3. Shallow Inland Water (Inland Water <5km from shore OR <50m deep;
i.e., a buffer zone around all lake shores and inland islands, plus shallow
areas up to 50m deep that are further than 5km from the land). Includes the
appropriate parts of the Caspian Sea, Aral Sea, Great Lakes, "2-line"
rivers, etc.

4. Ephemeral (intermittent) Water (from Digital Chart of the World).

5. Deep Inland Water (Inland water >5km from shoreline AND >50m deep;
i.e., Lake waters beyond 5km from their shore or islands, and greater than
50m eep). Includes the appropriate parts of the Caspian Sea, Aral Sea,
Great akes, etc.

6. Continental Shelf Ocean (Ocean >5km from coast AND between 50m and
500m deep); i.e., Oceans beyond 5km from coastal areas and islands, and
greater than 50m deep but less than 500m deep. Primarily represents the
Continental shelf areas.

7. Deep Ocean (Ocean >5km from coast AND >500m deep); i.e., The really
deep oceans.

 IMPORTANT!! It is the user's responsibility to allocate the appropriate
amount of space for interpValue. Note, that each mask has its own data
type, see PGS_DEM_GetSize.

 WARNING: Because of memory limitations it is not possible to extract
more than a certain number of points by a single call to this function. The
maximum number of points that can be extracted by one call to this
function depends on the machine configuration at the runtime.

REQUIREMENTS: PGSTK–0943

 6-315 333-EED-001, Revision 02

Return Data from a Specified Region of the DEM

NAME: PGS_DEM_GetRegion()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_GetRegion(

 PGSt_DEM_Tag resolutionList[],

 PGSt_integer numResolutions,

 PGSt_integer layer,

 PGSt_integer positionCode,

 PGSt_integer interpolation,

 PGSt_double latitude[2],

 PGSt_double longitude[2],

 void *dataRegion,

 PGSt_double regionSize[2],

 PGSt_double firstElement[2],

 PGSt_double pixelSize[2])

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

 integer function pgs_dem_getregion(resolutionList, numResolutions,
layer, positionCode, interpolation, latitude, longitude, dataRegion,
regionSize, firstElement, pixelSize)

integer resolutionList(*)

integer numResolutions

integer layer

integer positionCode

 6-316 333-EED-001, Revision 02

integer interpolation

double precision latitude(2)

double precision longitude(2)

‘user defined’ dataRegion(*)

double precision regionSize(2)

double precision firstElement(2)

double precision pixelSize(2)

DESCRIPTION: This tool returns the data from a rectangular region of the DEM data set.
In addition to returning an array of data, this tool will return the dimension
of the region in terms of coordinate degrees, the coordinates of the first
element of the dataRegion, and the size of the pixel. If any of the points in
the region of interest is a "hole", a fill value, then the tool will access the
next DEM data set in the input array. It will continue to step through
progressively lower resolution data sets (depending on the order of the
resolution tags in the inputted array) until it finds "valid", actual data. If
all of the inputted resolutions have a "hole" at these specific locations,
then the PGSDEM_M_FILLVALUE_INCLUDED will be returned. Even
if some of the queried points are not able to be interpolated (i.e., at the
lowest resolution that region is fill value), the data region is still returned.
The only consequence is that dataRegion will not consist solely of "valid"
and interpolated data but will also contain fill values

INPUTS: resolutionList - an array of resolution tags, data sets. See Notes to
PGS_DEM_SortModels().

 numResolutions - the number of resolution tags in the array resolutionList

 layer - indicates which data mask or layer one is accessing. See Notes to
PGS_DEM_DataPresent().

 positionCode - flag indicating the format of the position inputs, latitude
and longitude. See Notes to PGS_DEM_DataPresent().

 latitude[2] and longitude [2] - the bounding latitudes and longitudes of the
region of interest. See Notes to PGS_DEM_SortModels().

 interpolation - type of interpolation. See Notes to PGS_DEM_GetPoint().

OUTPUTS: dataRegion - an array in which the DEM data will be returned. See Notes.

 regionSize[2] - an array indicating the size of the region in terms of the
degrees of latitude and longitude. The array elements correspond to
latitude and longitude respectively. The values will be in decimal format.

 6-317 333-EED-001, Revision 02

 firstElement[2] - an array indicating the latitude and longitude, in decimal
degree format, of the first element. The elements of the array correspond
to latitude and longitude respectively.

 pixelSize[2] - an array indicating the size of a pixel in terms of the
degrees of latitude and longitude. The array elements correspond to
latitude and longitude respectively.

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

 PGSDEM_M_FILLVALUE_INCLUDED - fill values in the returned data

 PGSDEM_M_MULTIPLE_RESOLUTIONS - data accessed from
multiple resolutions

EXAMPLES:

C:

 PGSt_SMF_status status;

 PGSt_integer layer;

 PGSt_DEM_Tag resolutionList[2];

 PGSt_integer numResolutions;

 PGSt_double latitude[2];

 PGSt_double longitude[2];

 PGSt_double regionSize[2];

 PGSt_double firstElement[2];

 PGSt_double pixelSize[2];

 short * dataRegion;

/* NOTE: The type of data buffer should correspond to the type of data one is
extracting. Presently, the only available data are
PGSd_DEM_ELEV, PGSd_DEM_WATER_LAND, PGSd_DEM_SLOPE,
PGSd_DEM_ASPECT, PGSd_DEM_STD_DEV_ELEV, and
PGS_DEM_STDEV_SLOPE which are of type 2 byte integers
(except for PGSd_DEM_WATER_LAND which is 1 byte integer).

/* initialize input parameters, both resolutions and layer */

 resolutionList[0]= PGSd_DEM_3ARC;

 6-318 333-EED-001, Revision 02

 resolutionList[1] = PGSd_DEM_30ARC;

 layer = PGSd_DEM_ELEV;

/* initialize the location of the region of interest. In this case, positions
are in signed decimal degrees*/

/* upper left corner of region */

 pntLatitude[0] = 44.05;

 pntLongitude[0] = -80.0;

/* lower right corner of region */

 latitude[1] = 43.0;

 longitude[1] = -78.8;

/*Allocate space for the buffers GetRegion. It is the USER’s RESPONSIBILITY
TO ALLOCATE SPACE. . If one does not know the data type or
the extent of one’s region in global pixels, then one should
use the tool PGS_DEM_GetSize. */

 status = PGS_DEM_GetRegion(resolutionList, numResolutions,
layer ,PGSd_DEM_DEGREE, PGSd_DEM_NEAREST_NEIGHBOR, latitude,
longitude, dataRegion, regionSize, firstElement, pixelSize);

/* possible status returns */

 if (status == PGS_S_SUCCESS)

 {

 /*no fill points*/

 ...

 }

 else if (status == PGSDEM_M_FILLVALUE_INCLUDED)

 {

/*fill points included in the extracted data*/

 ...

 6-319 333-EED-001, Revision 02

 }

 else if (status == PGSDEM_M_MULTIPLE_RESOLUTIONS)

 {

/*no fill points in data buffer, fill points interpolated from multiple
resolutions*/

 ...

 }

 else

 {

/*Error in extracting the data */

/* Do some error handling*/

FORTRAN:

 integer status

 integer layer

 integer resolutionList(2)

 integer numResolutions

 double precision latitude(2)

 double precision longitude(2)

 double precision regionSize(2)

 double precision firstElement(2)

 double precision pixelSize(2)

 integer*2 dataRegion(*)

C *** NOTE: The type of data buffer should correspond to the type of data one
is extracting.

C Presently, the only available data are PGSd_DEM_ELEV, PGSd_DEM_WATER_LAND,

C PGSd_DEM_SLOPE, PGSd_DEM_ASPECT, PGSd_DEM_STD_DEV_ELEV,

C and PGS_DEM_STDEV_SLOPE which are of type 2 byte integers (except

C for PGSd_DEM_WATER_LAND which is 1 byte integer).

 6-320 333-EED-001, Revision 02

C In C the future, there will be data layers added which are NOT 2 byte or 1
byte integers. It is

C the USER’s RESPONSIBILITY TO ALLOCATE SPACE. If one does not know the data
type C or C the extent of one’s region in global pixels, then one should use
the tool C PGS_DEM_GetSize. ***

C initialize input parameters, both resolutions and layer

 resolutionList(1)= PGSd_DEM_3ARC

 resolutionList(2) = PGSd_DEM_30ARC

 layer = PGSd_DEM_ELEV

C initialize the region of interest. In this case, the position is in signed
decimal degrees.

C upper left corner of region

 pntLatitude(1) = 44.05

 pntLongitude(1) = -80.0

C lower right corner of region

 latitude(2) = 43.0

 longitude(2) = -78.8

 status = PGS_DEM_GetRegion(resolutionList,

 1 numResolutions, layer ,PGSd_DEM_DEGREE,

 1 PGSd_DEM_NEAREST_NEIGHBOR, latitude, longitude,

 1 dataRegion, regionSize, firstElement, pixelSize)

C possible status returns

 if (status == PGS_S_SUCCESS)

C **no fill points

 else if (status == PGSDEM_M_FILLVALUE_INCLUDED)

C **fill points included in extracted data

 6-321 333-EED-001, Revision 02

 else if (status == PGSDEM_M_MULTIPLE_RESOLUTIONS)

C **no fill points in extracted data. All fill points

C interpolated from other resolutions in resolutionList **

 else

C **Error extracting data

C **Do some error handling ...

NOTES: dataRegion:

 If the function locates fill values in the extracted data from the first
resolution in the resolutionList, it will attempt to interpolate from the other
resolutions. If the point of interest corresponds to a fill value at the lowest
resolution (the last resolution tag of resolutionList), then this fill value(s)
will be returned.

 IMPORTANT!! It is the user's responsibility to allocate the appropriate
amount of space for dataRegion. Note, that each mask has its own data
type, see PGS_DEM_GetSize.

REQUIREMENTS: PGSTK–0944

 6-322 333-EED-001, Revision 02

Extract Metadata from the DEM

NAME: PGS_DEM_GetMetadata()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_GetMetadata(

 PGSt_DEM_Tag resolution.

 PGSt_integer layer,

 PGSt_double pixLatInfo[2],

 PGSt_double pixLonInfo[2],

 char *positionUnits,

 PGSt_double *scaling,

 PGSt_double *offset,

 PGSt_double *fillValue,

 char *dataUnits,

 PGSt_integer *mapProjection,

 PGSt_boolean *qualityAssurLayer)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

 integer function pgs_dem_getmetadata(resolution, layer, pixLatInfo,
pixLonInfo, positionUnits, scaling, offset, fillValue, dataUnits,
mapProjection, qualityAssurLayer)

integer resolution

integer layer

 double precision pixLatInfo(2)

 double precision pixLonInfo(2)

 character positionUnits(*)

 6-323 333-EED-001, Revision 02

 double precision scaling

 double precision offset

 double precision fillValue

 character dataUnits(*)

 integer mapProjection

 integer qualityAssurLayer

DESCRIPTION: This tool accesses the general metadata that pertains to a single DEM data
set The metadata is for the whole data set, not for isolated geographic
sections of the data. Some of the metadata are valid for all the attributes,
but other metadata will be mask specific.

INPUTS: resolution - the resolution tag for a particular data set. See Notes to
PGS_DEM_DataPresent().

 layer - indicates which data mask or layer one is accessing. See Notes to
PGS_DEM_DataPresent().

OUTPUTS:

 pixLatInfo - an array of information on the global row pixels. See Notes.

 pixLonInfo - an array of information on the global column pixels. See
Notes.

 positionUnits - units of the position coordinates

 scaling - a pointer to the scaling factor to convert attribute data to its
appropriate units

 offset - a pointer to an offset to convert the attribute data (after scaling) to
a meaningful value

 resolution - a pointer to the resolution of the attribute data

 dataUnits - the units of the attribute data

 fillValue - a pointer to the fill value of the specified attribute data

 mapProjection - a pointer to the type of geographic projection applied to
the attribute data. Corresponds to different projection flags. See HDF-
EOS User's Guide for projection codes.

 qualityAssurLayer - flag indicating a quality assurance and source layer for
the attribute data. This will either have the value PGS_TRUE or
PGS_FALSE which corresponds to the existence and the absence,
respectively, of a quality assurance layer.

 6-324 333-EED-001, Revision 02

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_SMF_status status;

 PGSt_integer layer;

 PGSt_DEM_Tag resolution;

 PGSt_double pixLatInfo[2];

 PGSt_double pixLonInfo[2];

 PGSt_double scaling;

 PGSt_double offset;

 PGSt_double fillValue;

 character *positionUnits;

 character *dataUnits;

 PGSt_integer mapProjection;

 PGSt_boolean qualityAssuranceLayer;

/* initialize resolution and layer*/

 resolution = PGSd_DEM_3ARC;

 layer = PGSd_DEM_ELEV;

/* allocate enough space for positionUnits and dataUnits string *

 positionUnits = calloc(30. sizeof(char));

 dataUnits = calloc(30. sizeof(char));

 status = PGS_DEM_GetMetadata(resolution, layer, pixLatInfo,
pixLonInfo, positionUnits, &scaling, &offset, &fillValue,
dataUnits, &mapProjection, &qualityAssuranceLayer);

 if (status != PGS_S_SUCCESS)

 {

/* Do some error handling */

 6-325 333-EED-001, Revision 02

FORTRAN:

 integer status

 integer layer

 integer resolution

 double precision pixLatInfo(2)

 double precision pixLonInfo(2)

 double precision scaling

 double precision offset

 double precision fillValue

 integer mapProjection

 integer qualityAssuranceLayer

 character positionUnits(30)

 character dataUnits(30)

c **Note: character arrays should have enough space allocated to hold the
string. THIS IS THE USER’s RESPONSIBILITY ***

c initialize resolution and layer

 resolution = PGSd_DEM_3ARC

 layer = PGSd_DEM_ELEV

 status = PGS_DEM_GetMetadata(resolution, layer,

 1 pixLatInfo, pixLonInfo, positionUnits, &scaling,

 1 &offset, &fillValue, dataUnits, &mapProjection,

 1 &qualityAssuranceLayer)

 if (status .NE. PGS_S_SUCCESS) then

c ** Do some error handling

 6-326 333-EED-001, Revision 02

NOTES: pixLatInfo and pixLonInfo:

 All of the values of this array are in degree decimal format. The first
element of the array indicates the spacing between pixels. The second
element is the location within the pixel that is used for requesting the
location of that pixel (i.e. the center or corner of the pixel). This second
element is the vertical (pixLatInfo) or horizontal (pixLonInfo) offset of
this location from the top left corner of a pixel.

REQUIREMENTS: PGSTK–0945

 6-327 333-EED-001, Revision 02

ACCESS DEM Quality Data

NAME: PGS_DEM_GetQualityData()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_GetQualityData(

 PGSt_DEM_Tag resolution,

 PGSt_integer qualityField,

 PGSt_integer positionCode,

 PGSt_double latitude[2],

 PGSt_double longitude[2],

 void *qualityData)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

integer function pgs_dem_getqualitydata(resolution, qualityField,
positionCode, latitude, longitude, qualityData)

integer resolution

integer qualityField

 integer positionCode

 double precision latitude(2)

 double precision longitude(2)

 ‘user defined’ qualityRegion(*)

DESCRIPTION: This tool accesses the quality assurance layer of a particular DEM data set.
It takes a latitude and longitude of a point of interest and an attribute mask.
It returns information concerning the data source, the region over which
the quality assurance information is valid, the quality metric of the
aforesaid region, or information on the geoid.

 6-328 333-EED-001, Revision 02

INPUTS: resolution - the resolution tag for a particular data set. See Notes to
PGS_DEM_DataPresent().

 qualityField - the type of quality information requested. See Notes.

 positionCode - flag indicating the format of the position inputs,
pntLatitude and pntLongitude. See Notes to PGS_DEM_DataPresent().

 latitude[2] and longitude [2] - the latitude and longitude of the points of
interest in decimal format. See Notes to PGS_DEM_SortModels().

OUTPUTS: qualityData - an array containing the quality assurance layer information
for the region specified. The information returned is dependent on the flag
indicated in the qualityField. For example, one can obtain the data sources
for all the data in one's region.

RETURNS: PGS_S_SUCCESS -- success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C: PGSt_SMF_status status;

PGSt_integer numLayers;

PGSt_integer layerList[1];

PGSt_DEM_Tag resolutionList[1];

PGSt_integer numResolutions;

PGSt_double latitude[2];

PGSt_double longitude[2];

PGSt_integer numVertPix;

PGSt_integer numHorizPix;

PGSt_integer pixByte;

PGSt_integer totalNumPixels;

int16 *qualityData =NULL;

 /*Some initialization. Initializing resolutions and layers for PGS_DEM
functionality. */

resolutionList[0]= PGSd_DEM_30ARC;

numResolutions = 1;

 6-329 333-EED-001, Revision 02

layerList[0] = PGSd_DEM_ELEV;

numLayers = 1;

latitude[0] = 40.;

longitude[0] = -100.;

latitude[1] = 38.;

longitude[1] = -97.;

 /*Open the resolution and data layer*/

status = PGS_DEM_Open(resolutionList, numResolutions, layerList,

 numLayers);

 if(status != PGS_S_SUCCESS)

 {

 /*ERROR intializing*/

 printf("PGS_DEM_Open: error initializing\n");

 }

 else

 {

 printf("PGS_DEM_Open: Successful Open\n");

 }

 status = PGS_DEM_GetSize(resolutionList[0], PGSd_DEM_GEOID,

 PGSd_DEM_DEGREE, latitude, longitude,

 &numVertPix, &numHorizPix, &pixByte);

 if(status != PGS_S_SUCCESS)

 {

 /*ERROR with GetSize*/

 printf("PGS_DEM_GetSize: error-- %d\n", status);

 }

 else

 {

 /*print the size of region*/

 printf("PGS_DEM_GetSize: PGSd_DEM_GEOID\n");

 6-330 333-EED-001, Revision 02

 printf("number of bytes in one pixel is %d\n", pixByte);

printf("number of pixels vertically spanning region %d\n",
numVertPix);

printf("number of pixels horizontally spanning region %d\n",
numHorizPix);

 }

 /* allocate enough space for qualityData */

 totalNumPixels = numVertPix * numHorizPix;

 qualityData = calloc(totalNumPixels, pixByte);

 if (qualityData == NULL)

 {

 /*error callocing*/

 printf("error callocing\n");

 }

 /* Get Quality Data */

 status = PGS_DEM_GetQualityData(resolutionList[0],
PGSd_DEM_ GEOID, PGSd_DEM_DEGREE, latitude, longitude,

 (void *)qualityData);

 if (status != PGS_S_SUCCESS)

 {

 printf("error: PGS_DEM_GetQualityData\n");

 }

 else

 {

 printf("extracted quality data:using PGS_DEM_GetQualityData\n");

 }

 status = PGS_DEM_Close(resolutionList, numResolutions, layerList,
 numLayers);

 if (status != PGS_S_SUCCESS)

 {

 /*ERROR DE-INITIALIZING*/

 6-331 333-EED-001, Revision 02

printf("Error closing DEM session.\n");

 }

FORTRAN: TBD

NOTES: All the 15 arc second, 30 arc second, 3 arc second, and 90 arc second
DEM data are referenced vertically to mean sea level, which is
approximated by the geoid. The numbers for geoid that one can extract
using PGS_DEM_GetQualityData, as shown in the example, are added to
the DEM value to make the height relative to the WGS84 ellipsoid. Thus
in order to get height relative to the WGS84 ellipsoid one calls first
PGS_DEM_GetPoint (see example for the function PGS_DEM_GetPoint)
to retrieve the elevation data with respect to the mean sea level. The
subsequent call to PGS_DEM_GetQualityData, as shown in the example,
will retrieve geoid data. Then these values are added together to give the
height relative to the WGS84 ellipsoid.

qualityField:

 For example, one could query the information on either the data source,
the quality metric, or the geoid which corresponds to the flags
PGSd_DEM_SOURCE, PGSd_DEM_HORIZONTAL_ACCURACY,
PGSd_DEM_VERTICAL_ACCURACY, and PGSd_DEM_GEOID
respectively.

qualityData - Followings are the data types and values for quality fields:

Source: Data type is 1 byte integer

code 0-8:

0 - no data (ocean)

1 - Digital Terrain Elevation Data (DTED)

2 - Digital Chart of the World (DCW)

3 - USGS 1-degree DEM's

4 - Army Map Service 1:1,000,000-scale maps

5 - International Map of the World 1:1,000,000-scale map

6 - Peru 1:1,000,000-scale map

7 - New Zealand DEM

8 - Antarctic Digital Database (ADD)

Geoid: Data type is 2 byte integer

 6-332 333-EED-001, Revision 02

Data range is -101 to 75 Meters. Add numbers to Mean Sea Level to
achieve WGS84 Geoid.

Method: Data type is 1 byte integer.

accuracy calculation method - code 0-5:

0 - no data (ocean)

1 - accuracy from source DEM metadata

2 - vertical accuracy calculated by comparison with higher resolution
DEM; horizontal accuracy from source product specification

3 - accuracy from source DEM product specification

4 - vertical accuracy estimated from contour interval of source;

horizontal accuracy estimated from map scale of source

5 - not calculated

1 is used for DTED.

2 is used for DCW.

3 is used for USGS DEM's.

4 is used for cartographic sources (sources 4, 5, 6, and 7 in source data).

5 is used for Antarctica (where the wide range of contour intervals and
map scales in the ADD makes it unreasonable to give a reliable estimate).

Hoizontal Accuracy: Data type is 2 byte integer.

absolute horizontal accuracy: RMSE in meters

 -9999 = no data (ocean)

 9999 = unknown

Vertical Accuracy: Data type is 2 byte integer.

absolute vertical accuracy: RMSE in meters

 -9999 = no data (ocean)

 9999 = unknown

REQUIREMENTS: PGSTK–0946

 6-333 333-EED-001, Revision 02

Return Size of Specified DEM Region

NAME: PGS_DEM_GetSize()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_GetSize(

 PGSt_DEM_Tag resolution,

 PGSt_integer field,

 PGSt_integer positionCode,

 PGSt_double latitude[2],

 PGSt_double longitude[2],

 PGSt_integer *numPixVertical,

 PGSt_integer *numPixHorizontal,

 PGSt_integer *sizeDataType)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

 integer function pgs_dem_getsize(resolution, field, positionCode, latitude,
longitude, numPixVertical, numPixHorizontal, sizeDataType)

integer resolution

integer field

 integer positionCode

 double precision latitude(2)

 double precision longitude(2)

 integer numPixVertical

 integer numPixHorizontal

 integer sizeDataType

 6-334 333-EED-001, Revision 02

DESCRIPTION: This tool determines the size of a rectangular region defined by the
latitudes and longitudes of its upper left and lower right corners. This tool
is meant to facilitate the user's ability to allocate appropriate space for the
data returned by PGS_DEM_GetRegion and PGS_DEM_GetQualityData.
Use of this tool can prevent core dumps and other errors due to improper
allocation of memory.

INPUTS: resolution - the resolution tag for a particular data set. See Notes to
PGS_DEM_DataPresent().

 field - either a mask or a qualityField flag. See Notes.

 positionCode - flag indicating the format of the position inputs,
pntLatitude and pntLongitude. See Notes to PGS_DEM_DataPresent().

 latitude[2] and longitude [2] - the latitude and longitude of the points of
interest. See Notes to PGS_DEM_SortModels().

OUTPUTS: numPixVertical - a pointer to the number of pixels spanning the vertical
extent of the region

 numPixHorizontal - a pointer to the number of pixels spanning the
horizontal extent of the region

 sizeDataType - a pointer to the size of an individual pixel of data, in bytes

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_SMF_status status;

 PGSt_integer resolution;

 PGSt_integer layer;

 PGSt_double latitude[2];

 PGSt_double longitude[2];

 PGSt_integer numVertPix;

 PGSt_integer numHorizPix;

 PGSt_integer pixByte;

/* initialize resolution and layer */

 6-335 333-EED-001, Revision 02

 resolution = PGSd_DEM_30ARC;

 layer = PGSd_DEM_ELEV;

/*initialize location of region. In this case, position is in signed decimal
degrees */

 latitude[0] = 4.0;

 longitude[0] = 112.0;

 latitude[1] = -3.0;

 longitude[1] = 115.5;

 status = PGS_DEM_GetSize(resolution, layer, PGSd_DEM_DEGREE,
latitude, longitude, &numVertPix, &numHorizPix, &pixByte);

 if(status != PGS_S_SUCCESS)

 {

/* Do some error handling ...*/

FORTRAN:

 integer resolution

 integer layer

 integer status

 double precision latitude(2)

 double precision longitude(2)

 integer numVertPix

 integer numHorizPix

 integer pixByte

C **initialize resolution and layer

 resolution = PGSd_DEM_30ARC

 layer = PGSd_DEM_ELEV

C **initialize location of region. In this case, position is in signed
decimal degrees

 latitude(1) = 4.0

 6-336 333-EED-001, Revision 02

 longitude(1) = 112.0

 latitude(2) = -3.0

 longitude(2) = 115.5

 status = PGS_DEM_GetSize(resolution, layer,

 1 PGSd_DEM_DEGREE, latitude, longitude, numVertPix,

 1 numHorizPix, pixByte)

 if(status .NE. PGS_S_SUCCESS) then

C ** Do some error handling ...**

NOTES: field:

This indicates the layer attribute or field of the quality assurance layer over
which the region is "sized". For ECS Deliveries B.0, the layers that may
be inputted are elevation, standard deviation of elevation, water/land, slope
gradient, standard deviation of slope gradient, aspect , data source, quality
metric, and geoid which correspond to the flags PGSd_DEM_ELEV,
PGSd_DEM_STDEV_ELEV, PGSd_DEM_WATER_LAND,
PGSd_DEM_SLOPE, PGSd_DEM_STDEV_SLOPE,
PGSd_DEM_ASPECT, PGSd_DEM_SOURCE
PGSd_DEM__HORIZONTAL_ACCURACY,
PGSd_DEM_VERTICAL_ACCURACY, and PGSd_DEM_GEOID,
respectively. The layers that will be available in the future are:
topographical obscuration (PGSd_DEM_TOP_OBSC), and topographical
shadow (PGS_DEM_TOP_SHAD). Note that for 90 arc second data the
only available layer are elevation and land/water. And for 15 arc second
data the only available layer are elevation, land/water and standard
deviation of Elevation.

REQUIREMENTS: PGSTK–0947

 6-337 333-EED-001, Revision 02

6.3.2 Ancillary Data Tools

6.3.2.1 Introduction

There will be a large number of ancillary data files used in ECS instrument processing. The tools
in this section address files already identified at this writing.

Users could utilize language standard input/output functions or the HDF tools to access the
ancillary data. However, a suite of higher level tools is required for the following reasons:

a. to enable data from locations specified by the user to be returned to the user thus avoiding
having to know the internal structure of the file.

b. to shield the user from having to know details of parameter source or source format or to
track changes in either, although source changes will be agreed upon with the user.

c. to provide for certain additional manipulations of extracted data.

For this final point (c), only those data sets that have been specifically identified as requiring
particular manipulations will be serviced; i.e., the ancillary tools do not intend to provide a
general manipulation service for all types of data. However, the tools that extract from location
(a) will be sufficiently generic to allow additional data sets of a similar type to be used.

 6-338 333-EED-001, Revision 02

Access the Digital Chart of the World Database

NAME: PGS_AA_dcw()

SYNOPSIS:
C: #include <PGS_AA.h>
 PGSt_SMF_Status

PGS_AA_dcw (char iparms[][100], coverage name—PO
 PGSt_integer nParms, number of coverages
 PGSt_double longitude[], longitude of point(s)
 PGSt_double latitude[], latitude of point(s)
 PGSt_integer npoints, number of points
 void *results) result of search

FORTRAN: include 'PGS_AA_10.f'
 integer function

PGS_AA_dcw(parms, nParms, latitude, longitude, npoints, results)
 character*99 iparms(*),
 integer nParms,
 double latitude(*)

DESCRIPTION: This routine receives either a single point or an array of location points and
navigates the DCW database in order to find the coverage that the user
supplies as parm. Once the coverage is identified, the database path is
updated, with each file and table identified, until the table containing the
locational information is located. Once this table is found, the table is
opened and the result for a latitude/longitude is extracted and returned in
results.
 [start]

PERFORM PGS_AA_dcw_Parm
PERFORM PGS_AA_dcw_Intile
PERFORM PGS_AA_dcw_Inface
PERFORM PGS_AA_dcw_Feature
PERFORM return PGS_S_SUCCESS

 [end]

 6-339 333-EED-001, Revision 02

INPUTS:

Table 6-138. PGS_AA_dcw Inputs
Name Description Units Min Max

parms parameter wanted N/A N/A N/A
nParms number of parameters N/A 1 1
latitude latitude location degrees -90.0 90.0
longitude longitude location degrees -180.0 180.0
npoints number of points N/A 0 Unlimited

OUTPUTS:

Table 6-139. PGS_AA_dcw Outputs
Name Description Units Min Max

results extracted parameter char N/A N/A

RETURNS:

Table 6-140. PGS_AA_dcw Returns
Return Description

PGS_S_SUCCESS Successful return
PGSAA_E_DCW_ERROR Error in extracting value required
PGSAA_W_DCW_NODATA No data at that point in data base

 The following errors are reported to the error log

 PGSAA_E_CANT_FIND_PARM
PGSAA_E_CANT_GET_CONTINENT_PATH
PGSAA_E_CANT_GET_TILE_DIR
PGSAA_E_CANT_GET_POINT_IN_FACE
PGSAA_E_CANT_GET_POINT_INFO

EXAMPLES:

C: #include <PGS_AA.h>

 PGSt_double latitude[2] = {-9.29, -25.34};
PGSt_double longitude[2] = {110.3, 30.9};
PGSt_integer results[2];
char parm[PGSd_AA_MAXNOCACHES][100] = {"po"};

 ret_status = PGS_AA_dcw(parm, 1, longitude, latitude, 2,
 results);

 6-340 333-EED-001, Revision 02

FORTRAN: implicit none

 include "PGS_AA_10.f"
include "PGS_AA.f"
include "PGS_SMF.f"

 integer PGS_AA_dcw
character*99 parms(PGSd_AA_MAXNOCACHES)
integer nParms(2)
double latitude(2)
double longitude(2)
integer npoints(2)
integer result(2)
parms(1)= "po"
nParms = 2
latitude = -9.29, -25.34
longitude = 110.3, 30.9
npoints = 2

 call pgs_aa_dcw(parms, nParms, longitude, latitude, npoints,
 results)

NOTES: For further details of the background to this tool see the Toolkit Primer
Ancillary Data section (info on how to access this document can be found
in the preface of the Users Guide).

 IMPORTANT: The PGS_AA_dcw code calls a number of library
modules, which carry out such actions as mallocing memory for files,
opening files, opening tables, reading tables, extracting information from
tables and closing tables. These library modules are detailed in the DCW
format specification and the associated vector product format (VPF)
library software.

 NOTE: Precision of latitude and longitude is machine specific, not data–
base specific.

REQUIREMENTS: PGSTK–0840, PGSTK–0870, PGSTK–1360, PGSTK–1362

 6-341 333-EED-001, Revision 02

Access Available Data from a Set of Standard Digital Elevation
Models (DEMs)

NAME: PGS_AA_dem()

SYNOPSIS:

C: #include "PGS_AA.h"

 PGSt_SMF_status
PGS_AA_dem(char parms[][100],
 PGSt_integer nParms,
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_integer versionFlag[],
 PGSt_integer nPoints,
 PGSt_PC_Logical fileId,
 PGSt_integer operation,
 void *results)

FORTRAN: include "PGS_AA_10.f"
include "PGS_AA.f"

 integer function
pgs_aa_dem (parms, nparms, latitude, longitude,
 versionflag, npoints, fileId, operation, results)
 character*99 parms(*)
 integer nParms
 double precision latitude(*)
 double precision longitude(*)
 integer versionflag(*)
 integer npoints
 integer fileId
 integer operation
 'user specified' results (see Notes)

DESCRIPTION: This routine provides the interface to retrieve DEM values from the
gridded data set.

 6-342 333-EED-001, Revision 02

INPUTS:

Table 6-141. PGS_AA_dem Inputs
Name Description Units Min Max

parms parameter names requested see notes
nParms number of parms none 1 #defined
latitude latitude(s) of the requested point degrees -90.00 90.00
longitude longitude(s) of the requested point degrees -180.00 180.00
nPoints no. of points requested none 1 variable
fileId logical file number none variable variable
operation defines user required none 1 variable

OUTPUTS:

Table 6-142. PGS_AA_dem Outputs
Name Description Units Min Max

versionFlag indicates tile location for a point (see notes) see notes 1 variable
results results see notes

RETURNS:

Table 6-143. PGS_AA_dem Returns
Returns Descriptions

PGS_S_SUCCESS Successful return
PGSAA_E_NPOINTSINVALID Number of points invalid
PGSAA_E_TILE_STATUS Could not establish tile status of the DEM file
PGSAA_E_2DGEO Error returned from PGS_AA_2Dgeo
PGSAA_E_SUPPORTID Could not establish support file id
PGSAA_E_MINMAX Could not establish min/max range for the DEM
PGSAA_E_DATATYPE Could not establish parameter datatype
PGSAA_E_UNKNOWN_DATATYPE DEM datafile datatype is unknown

 6-343 333-EED-001, Revision 02

EXAMPLES:

C: #include <PGS_AA.h>

PGSt_SMF_status retStatus;

 char parms[PGSd_AA_MAXNOCACHES][100] = { "USAelevation" };
long nParms = 1;
PGSt_double latitude[MAX_POINTS] = {51.5, 51.23666,
 50.973333} ;
PGSt_double longitude[MAX_POINTS] = {0.1666666,0.3832,
 0.5999};

 PGSt_integer versionFlag[MAX_POINTS];

 PGSt_integer nPoints = 3;
long fileId = 210;
long version = 0;
long operation = 1;
short results[3];
retStatus = PGS_AA_2Dgeo(parms, nParms, latitude, longitude,
 versionFlag, nPoints, fileId,
 operation, results);

FORTRAN: implicit none

 include "PGS_AA_10.f"
include "PGS_AA.f"
include "PGS_SMF.f"

 parms(PGSd_AA_MAXNOCACHES)
integer pgs_aa_dem
integer versionFlag(300)
integer nParm
double precision latitude(300)
double precision longitude(300)
integer fileId
integer nPoints
integer version
integer operation
integer results(300)
integer retStatus
parms(1)= "USAelevation"
nParms = 1
fileId = 202
operation = 1
nPoints = 300
do 10 i = 1, 300
.

 6-344 333-EED-001, Revision 02

.
latitude(i) = calculated_user_lat
longitude(i) = calculated_user_lon
.
.

 10 continue

 retStatus = pgs_aa_dem(parms, nparms, latitude,
2 longitude, versionFlag, npoints,
1 fileId, operation, results)

NOTES: The added facility that differentiates this tool from its sister tool
PGS_AA_2Dgeo is that this routine can handle tiled data sets by selecting
from geographically separated tiles. Some of the DEM datafiles can be
very large files and are necessarily tiled into smaller files to avoid memory
problems.

 Also this routine processes all input point data and returns a warning if
some of the input points were found to be out of range. In such an event
user can examine versionFlag[] to locate the offending points. For such
points the corresponding location in versionFlag would contain a value
PGSd_AA_OUT_OF_RANGE, e.g.,
 if latitude[3] and longitude[3] is the offending point then
 versionFlag[3] = PGSd_AA_OUT_OF_RANGE.

 For other points the versionFlag[] would actually contain the number of
the tile where the point was located.

 For the details of DEM datafiles the user is referred to appendix D.
 The FORTRAN result argument returned is not specified since it depends

on the data set used; e.g., it could be real or integer.
 The results buffer holds the final output sent back to the user. It can hold

data of 4 types (long, short, float, double).
 For more details the user is referred to information regarding

PGS_AA_2Dgeo.
 Users MUST be aware of the amount of disk space required by the number

of calls to the tool (where calls demand the ingestion of separate physical
files), and in doing so not exceed the capacity of the machine they are
working on.

 DEC—users
 DEC users should be aware that for some of the product files a DEC

version (e.g., etop05.dat_dec) is supplied. The user should use these
instead of the normal files. This is for backward compatibility with the
PGS_AA_2Dgeo tool. For the rest of the data files there is an inbuilt
facility to swap the bytes. For these files there is a flag 'swapBytes = yes' in
the support file. This flag is set to 'no' for the data files with 'dec' versions.

 6-345 333-EED-001, Revision 02

Another issue that the user should be aware of is that DEC represents
'long' datatype as 8 bytes long. Therefore, if there is a datafile created on a
different platform (most other platforms represent 'long' as
4 bytes), then that file must be converted first to be used on the DEC.
Conversion should simply be reading the file as 'int' (4 bytes) and writing
it out as 'long' (8 bytes) on the DEC. To take care of byteswapping the
support file for such datafile should contain a flag 'swapBytes = yes'.

REQUIREMENTS: PGSTK–0840, PGSTK–0980

 6-346 333-EED-001, Revision 02

Extract String Parameter from Parameter=Value Formatted File

NAME: PGS_AA_PeVA_string()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_PeVA_string(
 PGSt_uinteger pevLogical,
 char *parameter,
 char *value[])

FORTRAN: include "PGS_AA_10.f"
include "PGS_AA.f"

 integer function
pgs_aa_peva_string(pevLogical, parameter, value)
 integer pevLogical
 character*(*) parameter
 character*(*) value

DESCRIPTION: This routine returns the value associated with a string type parameter from
the given file.

INPUTS:

Table 6-144. PGS_AA_PeVA_string Inputs
Name Description Units Min Max

pevLogical file logical for file to be accessed see notes
parameter name of parameter to be

retrieved
see notes

OUTPUTS:

Table 6-145. PGS_AA_PeVA_string Outputs
Name Description Units Min Max

value value associated with retrieved parameter see notes

 6-347 333-EED-001, Revision 02

RETURNS:

Table 6-146. PGS_AA_PeVA_string Returns
Return Description

PGS_S_SUCCESS Successful return
PGSAA_E_PEV_ERROR Error in extracting the required value

 The following errors are reported to the error log

 PGSAA_E_CANT_GET_FILE_ID
PGSAA_E_CANT_OPEN_INPUT_FILE
PGSAA_E_AGG_CANT_BE_INSERTED
PGSAA_E_READLABEL_PARSE_ERROR
PGSAA_E_PARAMETER_INVALID
PGSAA_E_FIRST_NODE_NOT_FOUND

EXAMPLE:

C: #include <PGS_AA.h>

#define MAX_STRING 30

 PGSt_SMF_status retStatus;
char *myStringValue[MAX_STRING]= {" "

 " "

 "
"};

 ret_status = PGS_AA_PeVA_string(MY_PEV_FILE,
 "MY_STRING_PARAMETER",
 myStringValue);

 if (ret_status != PGS_S_SUCCESS)
{
 signal ERROR
}

FORTRAN: implicit none

 include 'PGS_AA.f'
include 'PGS_AA_10.f'

 integer pgs_aa_peva_string
integer pevLogical, return
character*30 parameter
character*20 value

 6-348 333-EED-001, Revision 02

pevLogical = 876
parameter = "dataType"

 return = pgs_aa_peva_string(pevLogical, parameter, value)

NOTES: The logical is an integer whose value is supplied through the PC tools. The
parameter is a data set dependent character string and the value is also a
string as returned from the data file identified by the logical. For

REQUIREMENTS: PGSTK–1365

 6-349 333-EED-001, Revision 02

Extract Real Parameter from Parameter = Value Formatted File

NAME: PGS_AA_PeVA_real()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_PeVA_real(
 PGSt_uinteger pevLogical,
 char *parameter,
 PGSt_double *value)

FORTRAN: include 'PGS_AA_10.f'
include 'PGS_AA.f'

 integer function
pgs_aa_peva_real(pevLogical, parameter, value)
 integer pevLogical
 character*(*) parameter
 double precision value

DESCRIPTION: This routine returns the value associated with a string type parameter from
the given file.

INPUTS:

Table 6-147. PGS_AA_PeVA_real Inputs
Name Description Units Min Max

pevLogical file logical for file to be accessed see notes
parameter name of parameter to be

retrieved
see notes

OUTPUTS:

Table 6-148. PGS_AA_PeVA_real Outputs
Name Description Units Min Max

value value associated with retrieved parameter see notes

 6-350 333-EED-001, Revision 02

RETURNS:

Table 6-149. PGS_AA_PeVA_real Returns
Return Description

PGS_S_SUCCESS Successful return
PGSAA_E_PEV_ERROR Error in extracting the required value

 The following errors are reported to the error log

 PGSCUC_E_CANT_GET_FILE_ID
PGSCUC_E_CANT_OPEN_INPUT_FILE
PGSCUC_E_AGG_CANT_BE_INSERTED
PGSCUC_E_READLABEL_PARSE_ERROR
PGSCUC_E_PARAMETER_INVALID
PGSCUC_E_FIRST_NODE_NOT_FOUND

EXAMPLE:

C: #include <PGS_AA.h>

 PGSt_SMF_status retStatus;
PGSt_double myRealValue[10];

 ret_status = PGS_AA_PeVA_real(MY_PEV_FILE,
 "MY_STRING_PARAMETER",
 &myRealValue);

 if (ret_status != PGS_S_SUCCESS)
{
 signal ERROR
}

FORTRAN: implicit none

 include 'PGS_AA.f'
include 'PGS_AA_10.f'

 integer pgs_aa_peva_real
integer pevLogical, return
character*30 parameter
double precision value
pevLogical = 876
parameter = "maxLat"

 return = pgs_aa_peva_real(pevLogical, parameter, value)

 6-351 333-EED-001, Revision 02

NOTES: The logical is an integer whose value is supplied through the PC tools. The
parameter is a data set dependent character string and the value is a real as
returned from the data file identified by the logical.

REQUIREMENTS: PGSTK–1365

 6-352 333-EED-001, Revision 02

Extract Integer Parameter from Parameter = Value Formatted File

NAME: PGS_AA_PeVA_integer()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_PeVA_integer(
 PGSt_uinteger pevLogical,
 char *parameter,
 PGSt)integer *value)

FORTRAN: include 'PGS_AA_10.f'
include "PGS_AA.f"

 integer function
pgs_aa_peva_integer(pevLogical, parameter, value)
 integer pevLogical
 character*(*) parameter
 integer value

DESCRIPTION: This routine returns the value associated with a string type parameter from
the given file.

INPUTS:

Table 6-150. PGS_AA_PeVA_integer Inputs
Name Description Units Min Max

pevLogical file logical for file to be accessed see notes
parameter name of parameter to be

retrieved
see notes

OUTPUTS:

Table 6-151. PGS_AA_PeVA_integer Outputs
Name Description Units Min Max

value value associated with retrieved parameter see notes

RETURNS:

Table 6-152. PGS_AA_PeVA_integer Returns
Return Description

PGS_S_SUCCESS Successful return
PGSAA_E_PEV_ERROR Error in extracting the required value

 6-353 333-EED-001, Revision 02

The following errors are reported to the error log

 PGSCUC_E_CANT_GET_FILE_ID
PGSCUC_E_CANT_OPEN_INPUT_FILE
PGSCUC_E_AGG_CANT_BE_INSERTED
PGSCUC_E_READLABEL_PARSE_ERROR
PGSCUC_E_PARAMETER_INVALID
PGSCUC_E_FIRST_NODE_NOT_FOUND

EXAMPLE:

C: #include <PGS_AA.h>

 PGSt_SMF_status retStatus;
PGSt_integer myIntValue;

 ret_status = PGS_AA_PeVA_integer(MY_PEV_FILE,
 "MY_STRING_PARAMETER",
 &myIntValue);

 if (ret_status != PGS_S_SUCCESS)
{
 signal ERROR
}

FORTRAN: implicit none

 include 'PGS_AA.f'
include 'PGS_AA_10.f'

 integer pgs_aa_peva_integer
integer pevLogical, return
character*30 parameter
integer*(*) value
pevLogical = 876
parameter = "size"

 return = pgs_aa_peva_real(pevLogical, parameter, value)

NOTES: The logical is an integer whose value is supplied through the PC tools. The
parameter is a data set dependent character string and the value is a real as
returned from the data file identified by the logical.

REQUIREMENTS: PGSTK–1365

 6-354 333-EED-001, Revision 02

Extract Data from Gridded Data Sets by Geographic Location

NAME: PGS_AA_2Dgeo()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_2Dgeo (char iparms[][100],
 PGSt_integer nParms,
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_integer nPoints,
 PGSt_integer fileId,
 PGSt_integer version,
 PGSt_integer operation,
 void *results);

FORTRAN: include 'PGS_AA_10.f'
include 'PGS_AA.f'

 integer function
pgs_aa_2dgeo(parms, nparms, latitude, longitude, fileId,
 version, operation, results)
 character*99 parms(*)
 integer nParms
 real*8 latitude(*)
 real*8 longitude(*)
 integer fileId
 integer version
 integer operation
 'user specified' results (see Notes)

DESCRIPTION: The user specifies a parameter, a fileId and version from which the data
are to be extracted using the geographic coordinates. Since this tool is
similar to the other AA geo and Read tools, a single explanation of the
interface is provided in Appendix D.3.

 The interface to the calling algorithm that extracts gridded data by
geographic location.

 [start]
PERFORM PGS_AA_Map
PERFORM PGS_AA_GetSupp to get support data
DO allocate memory to parmBuffer using

 6-355 333-EED-001, Revision 02

 totalParmMemoryCache
PERFORM PGS_AA_FF_Setup
DO set tool used to 2
PERFORM PGS_AA_GEOGrid
[end]

INPUTS:

Table 6-153. PGS_AA_2Dgeo Inputs
Name Description Units Min Max

parms parameter names see notes requested
nParms number of parms none 1 #defined
latitude latitude(s) of the requested point degrees -90.00 90.00
longitude longitude(s) of the requested point degrees -180.00 180.00
nPoints no. of points requested none 1 variable
fileId logical file number none variable variable
version version of dynamic file none 1 variable
operation defines user required none 1 variable

OUTPUTS:

Table 6-154. PGS_AA_2Dgeo Outputs
Name Description Units Min Max

results results see notes

 6-356 333-EED-001, Revision 02

RETURNS:

Table 6-155. PGS_AA_2Dgeo Returns
To

User/Log
File

Return Description

u PGSAA_E_GEOERRO Error in GEO extraction
l PGSAA_E_AUTOOPERATION Error in executing autoOperation
l PGSAA_E_AUTOOPERATIONUNSET No autoOperation found in support file
l PGSAA_E_OPERATION Error in executing operation
l PGSAA_E_OPERATIONUNSET Operation not set by user
ul PGSAA_E_GEOTOSTRUCT Failure in calculation of structure from lat/lon
ul PGSAA_E_UNIDENTIFIEDTYPE Type cannot be identified, results failure
u PGSAA_E_SUPPORTFILE Support or format files inaccessible
ul PGSAA_E_PARMSNOTFOUND Parameter(s) not found in the support

support file
l PGSAA_E_DATARATEUNSET dataRate attribute unset in support file
ul PGSAA_E_PARMSFROMANYFILES Parameters requested from more than one

physical file
ul PGSAA_E_INVALIDNOPARMS No of parms incorrect
ul PGSAA_E_BADSUPPSUPPORT Tool support file is corrupted or incomplete
ul PGSAA_E_CANTFINDFILE Format of input data file inaccessible
u PGSAA_E_FFERROR A freeform error has occured
l PGSAA_E_FFDBIN Failure in Freeform make_dbin function
l PGSAA_E_FFDBSET Failure in Freeform db_set function
l PGSAA_E_FFDBEVENTS Failure in Freeform db_events function
ul PGSAA_E_MALLOC Failure to malloc
u PGSAA_E_PEV_ERROR An error has occurred in the PeVA tool
l PGSAA_E_PEV_XS_SUPPFILES Too many PeVA files open, increase

MAXFILES
l PGSAA_E_CANT_GET_VALUE Unable to extract value from dbin
l PGSAA_E_GETDBIN Error in PeVA tool obtaining dbin
u PGSAA_E_GETSUPP An error was detected while extracting

support data
l PGSAA_E_POSITION_CALC_FAILURE The position in the parmBuffer of the

requested values was miscalculated
u PGSAA_E_TWOD_READ_ERROR Function failure to read parameter values

from buffer
l PGSAA_E_EXTRACTORESULTSERROR Failure to transfer selected values from

parmBuffer to results
ul PGSAA_E_OUTOFRANGE Input values out of data set range

 6-357 333-EED-001, Revision 02

EXAMPLE:
C: #include <PGS_AA.h>

PGSt_SMF_status retStatus;

 char parms[PGSd_AA_MAXNOCACHES][100] = {
 "etop05SeaLevelElevM" };
long nParms = 1;

 PGSt_double latitude[] = {51.5, 51.23666, 50.973333} ;
PGSt_double longitude[] = {0.1666666,0.3832, 0.5999};

 PGSt_integer nPoints = 3;

 PGSt_integer fileId = 10955;

 PGSt_integer version = 1;

 PGSt_integer operation = 1;

 short results[3];

 retStatus = PGS_AA_2Dgeo(parms, nParms, latitude, longitude,
 nPoints, fileId, version,
 operation, results);

FORTRAN: implicit none

 include "PGS_AA_10"
include "PGS_AA.f"
include "PGS_SMF.f"

 integer pgs_aa_2dgeo
character*99 parms(PGSd_AA_MAXNOCACHES)
integer nParms
real*8 latitude(300)
real*8 longitude(300)
integer fileId
integer nPoints
integer version
integer operation
integer results(300)
parms(1)= "fnocMod"
nParms = 1
fileId = 10965
operation = 1
version = 1
nPoints = 300
do 10 i = 1, 300
.
.

 6-358 333-EED-001, Revision 02

latitude(i) = calculated_user_lat
longitude(i) = calculated_user_lon
.
.

 10 continue

 call pgs_aa_2dgeo(parms, nparms, latitude, longitude,
 fileId, version, operation, results)

NOTES: For further details of the background to these tools and the available data
sets, support files and the means by which new data sets can be introduced,
see the Toolkit Primer Ancillary Data section (info on how to access this
document can be found in the preface of the Users Guide) or appendix D
in this document. These also include details of the operations that can be
set by the user and the autoOperations associated with particular data sets.

 The FORTRAN result argument returned is not specified since it depends
on the data set used; e.g., it could be real or integer.

 The upper limit of the range of input variables is data set specific. The
parms input variable is a parameter and data set specific set of strings. The
parmBuffer input is a memory buffer holding whatever data is extracted
form the data set requested by the user. The results buffer is similar
although holds the final output sent back to the user. It can hold data of 4
types (long, short, float, double).

 It is critical that the results buffer be declared to be of the same type as that
found in the first element of the support file (or PGSt_integer for short
/long when working in FORTRAN) and be dimensioned to exactly contain
the requested dimensions.

REQUIREMENTS: PGSTK–0840, PGSTK–0931, PGSTK–0980, PGSTK–1030,
PGSTK–1362

 6-359 333-EED-001, Revision 02

Extract Data from Gridded Data Sets by Geographic Location

NAME: PGS_AA_3Dgeo()

SYNOPSIS:
C: #include <PGS_AA.h>
 PGSt_SMF_status

PGS_AA_3Dgeo (char iparms[][100],
 PGSt_integer nParms,
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_integer height[],
 PGSt_integer nPoints,
 PGSt_integer fileId,
 PGSt_integer version,
 PGSt_integer operation,
 void *results);

FORTRAN: include 'PGS_AA_10.f'
include "PGS_AA.f"

 character*99 iparms(PGSd_AA_MAXNOCACHES)
 integer nParms
 real*8 latitude(*)
 real*8 longitude(*)
 integer height(*)
 integer fileId
 integer version
 integer operation
 'user specified' results (see Notes)

 integer function
pgs_aa_3dread(parms, nparms, latitude, longitude,
 height, fileId, version, operation, results)

DESCRIPTION: The user specifies a parameter, a fileId and version from which the data
are to be extracted using the geographic coordinates. Since this tool is
similar to the other AA geo and Read tools, a single explanation of the
interface is provided in Appendix D.3.

 The interface to the calling algorithm that extract gridded data by
geographic location.
 [start]

PERFORM PGS_AA_Map
PERFORM PGS_AA_GetSupp to get support data

 6-360 333-EED-001, Revision 02

DO allocate memory to parmBuffer using
 totalParmMemoryCache
PERFORM PGS_AA_FF_Setup
DO set tool used to 3
PERFORM PGS_AA_GEOGrid
[end]

INPUTS:

Table 6-156. PGS_AA_3Dgeo Inputs
Name Description Units Min Max

iparms parameter names requested see notes
nParms number of parms none 1 4
latitude latitude(s) of the requested point degrees -90.00 90.00
longitude longitude(s) of the requested point degrees -180.00 180.00
height height of the requested point none 1 variable
nPoints no. of points requested none 1 variable
fileId logical file number none variable variable
version version of dynamic file none 1 variable
operation defines user required none 1 variable

OUTPUTS:

Table 6-157. PGS_AA_3Dgeo Outputs
Name Description Units Min Max

results results see notes

RETURNS:

Table 6-158. PGS_AA_3Dgeo Returns (1 of 2)
To

User/Log
File

Return Description

u PGSAA_E_GEOERROR Error in GEO extraction
l PGSAA_E_AUTOOPERATION Error in executing autoOperation
l PGSAA_E_AUTOOPERATIONUNSET No autoOperation found in support file
l PGSAA_E_OPERATION Error in executing operation
l PGSAA_E_OPERATIONUNSET Operation not set by user

ul PGSAA_E_GEOTOSTRUCT Failure in calculation of structure from lat/lon
ul PGSAA_E_UNIDENTIFIEDTYPE Type cannot be identified, results failure
u PGSAA_E_SUPPORTFILE Support or format files inaccessible

 6-361 333-EED-001, Revision 02

Table 6-158. PGS_AA_3Dgeo Returns (2 of 2)
To

User/Log
File

Return Description

ul PGSAA_E_PARMSNOTFOUND Parameter(s) not found in the support support
file

l PGSAA_E_DATARATEUNSET dataRate attribute unset in support file
ul PGSAA_E_PARMSFROMANYFILES Parameters requested from more than one

physical file
ul PGSAA_E_INVALIDNOPARMS No of parms incorrect
ul PGSAA_E_BADSUPPSUPPORT Tool support file is corrupted or incomplete
ul PGSAA_E_CANTFINDFILE Format of input data file inaccessible
u PGSAA_E_FFERROR A freeform error has occured
l PGSAA_E_FFDBIN Failure in Freeform make_dbin function
l PGSAA_E_FFDBSET Failure in Freeform db_set function
l PGSAA_E_FFDBEVENTS Failure in Freeform db_events function

ul PGSAA_E_MALLOC Failure to malloc
u PGSAA_E_PEV_ERROR An error has occurred in the PeVA tool
l PGSAA_E_PEV_XS_SUPPFILES Too many PeVA files open, increase MAXFILES
l PGSAA_E_CANT_GET_VALUE Unable to extract value from dbin
l PGSAA_E_GETDBIN Error in PeVA tool obtaining dbin
u PGSAA_E_GETSUPP An error was detected while extracting support

data
l PGSAA_E_POSITION_CALC_FAILURE The position in the parmBuffer of the requested

values was miscalculated
u PGSAA_E_THREED_READ_ERROR Function failure to read parameter values from

buffer
l PGSAA_E_EXTRACTORESULTSERROR Failure to transfer selected values from

parmBuffer to results
ul PGSAA_E_OUTOFRANGE Input values out of data set range

EXAMPLE:

C: #include <PGS_AA.h>

PGSt_SMF_status retStatus;

 char parms[PGSd_AA_MAXNOCACHES][100] =
 {"nmcRucSigPres","nmcRucSigPot"};
long nParms = 2;

 PGSt_double latitude[] = {51.5, 51.23666, 50.973333} ;
PGSt_double longitude[] = {0.1666666, 0.3832, 0.5999};
long height[] = {1,2,1};
PGSt_integer nPoints = 3;

 long fileId = 10972;

 long version = 1;

 6-362 333-EED-001, Revision 02

 long operation = 2;

 short results[3][2];

 retStatus = PGS_AA_3Dgeo(parms, nParms, latitude, longitude,
 height, nPoints, fileId, version,
 operation, results);

FORTRAN: implicit none

 include "PGS_AA_10.f"
include "PGS_AA.f"
include "PGS_SMF.f"

 integer pgs_aa_3dgeo
character*99 iparms(PGSd_AA_MAXNOCACHES)
integer nParms
real*8 latitude(300)
real*8 longitude(300)
integer height(300)
integer fileId
integer nPoints
integer version
integer operation
integer results(2,300)
parms(1)= "nmcRucSigPres"

 parms(2)= "nmcRucSigPot"
nParms= 2
fileId = 10972
operation = 2
version = 1
nPoints = 300
do 10 i = 1, 300
.
.
latitude(i) = calculated_user_lat
longitude(i) = calculated_user_lon
height(i) = calculate_user_height
.
.

 10 continue

 call pgs_aa_3dgeo(iparms, nparms,latitude, longitude,
 height, fileId, version, operation,
 results)

 6-363 333-EED-001, Revision 02

NOTES: For further details of the background to these tools and the available data
sets, support files and the means by which new data sets can be introduced,
see the Toolkit Primer Ancillary Data section (info on how to access this
document can be found in the preface of the Users Guide) or appendix D
in this document. These also include details of the operations that can be
set by the user and the autoOperations associated with particular data sets.

 The FORTRAN result argument returned is not specified since it depends
on the data set used; e.g., it could be real or integer.

 Height or the z dimension is a layer number in the file and is data set
dependent.

 The upper limit of the range of input variables is data set specific. The
parms input variable is a parameter and data set specific set of strings. The
results buffer is a memory buffer holding whatever data is extracted form
the data set requested by the user. It can hold data of 4 types (long, short,
float, double).

 It is critical that the results buffer be declared to be of the same type as that
found in the first element of the support file (or PGSt_integer for short
/long when working in FORTRAN) and be dimensioned to exactly contain
the requested dimensions.

REQUIREMENTS: PGSTK–0931, PGSTK–0840, PGSTK–1362

 6-364 333-EED-001, Revision 02

Extract Data from Gridded Data Sets by File Structure

NAME: PGS_AA_2DRead()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_2DRead(
 char iparms[][100],
 PGSt_integer nParms,
 PGSt_integer xStart,
 PGSt_integer yStart,
 PGSt_integer xDim,
 PGSt_integer yDim,
 PGSt_integer fileId,
 PGSt_integer version,
 PGSt_integer operation,
 void *results)

FORTRAN: include 'PGS_AA_10.f'
include "PGS_AA.f"

 integer function
pgs_aa_2dread(parms, nparms, xStart, yStart, xDim, yDim, fileId,
 version, operation, results)
 character*99 parms(*)
 integer nParms,
 integer xStart,
 integer yStart,
 integer xDim,
 integer yDim,
 integer fileId,
 integer version,
 integer operation,
 'user specified' results (see Notes)

DESCRIPTION: The user specifies a parameter, a fileId and version from which the data
are to be extracted using the data structure coordinates. Since this tool is
similar to the other AA geo and Read tools, a single explanation of the
interface is provided in Appendix D.3.

 The interface to the calling algorithm that accepts the arguments and calls
PGS_AA_Map, PGS_AA_GetSupp, PGS_AA_FF_Setup and

 6-365 333-EED-001, Revision 02

PGS_AA_2DReadGrid. The first 3 of these modules determine the
validity of the call and initialize support and load the identified data into
memory. PGS_AA_2DReadGrid performs the extraction requested from
the input arguments

 [start]
PERFORM PGS_AA_Map
PERFORM PGS_AA_GetSupp to get support data
DO allocate memory to parmBuffer using
 totalParmMemoryCache
PERFORM PGS_AA_FF_Setup
PERFORM PGS_AA_2DReadGrid
[end]

INPUTS:

Table 6-159. PGS_AA_2DRead Input
Name Description Units Min Max

parms parameter names requested see notes
nParms number of parms none 1 #defined
xStart the x start point none 1 variable
yStart the y start point none 1 variable
xDim the x dimension none 1 variable
yDim the y dimension none 1 variable
fileId logical file number none variable variable
version version of dynamic file none 1 variable
operation defines user required none 1 variable

OUTPUTS:

Table 6-160. PGS_AA_2DRead Output
Name Description Units Min Max

results results variable N/A N/A

 6-366 333-EED-001, Revision 02

RETURNS:

Table 6-161. PGS_AA_2DRead Returns
To User/Log

File
Return Description

u PGSAA_E_SUPPORTFILE Support or format files inaccessible
ul PGSAA_E_PARMSNOTFOUND Parameter(s) not found in the support

support file
l PGSAA_E_DATARATEUNSET dataRate attribute unset in support file

ul PGSAA_E_PARMSFROMANYFILES Parameters requested from more than one
physical file

ul PGSAA_E_INVALIDNOPARMS No of parms incorrect
ul PGSAA_E_BADSUPPSUPPORT Tool support file is corrupted or incomplete
ul PGSAA_E_CANTFINDFILE Format of input data file inaccessible
u PGSAA_E_FFERROR A freeform error has occured
l PGSAA_E_FFDBIN Failure in Freeform make_dbin function
l PGSAA_E_FFDBSET Failure in Freeform db_set function
l PGSAA_E_FFDBEVENTS Failure in Freeform db_events function

ul PGSAA_E_MALLOC Failure to malloc
u PGSAA_E_PEV_ERROR An error has occurred in the PeVA tool
l PGSAA_E_PEV_XS_SUPPFILES Too many PeVA files open, increase

MAXFILES
l PGSAA_E_CANT_GET_VALUE Unable to extract value from dbin
l PGSAA_E_GETDBIN Error in PeVA tool obtaining dbin
u PGSAA_E_GETSUPP An error was detected while extracting

support data
l PGSAA_E_POSITION_CALC_FAILURE The position in the parmBuffer of the

requested values was miscalculated
u PGSAA_E_TWOD_READ_ERROR Function failure to read parameter values

from buffer
l PGSAA_E_EXTRACTORESULTSERROR Failure to transfer selected values from

parmBuffer to results
ul PGSAA_E_OUTOFRANGE Input values out of data set range

EXAMPLE:

C: #include <PGS_AA.h>

PGSt_SMF_status retStatus;

 short results[50][20]
char parm[PGSd_AA_MAXNOCACHES][100] =
 {"OlsonWorldEcosystems1.3a"};
PGSt_integer nParms = 1;
PGSt_integer xStart = 4;
PGSt_integer yStart = 7;
PGSt_integer xDim = 20;

 6-367 333-EED-001, Revision 02

PGSt_integer yDim = 50;
PGSt_integer fileId = 10952;

 PGSt_integer version = 1;

 PGSt_SMF_status = PGS_AA_2DRead (parm, nParms, xStart,
 yStart, xDim, yDim, fileId,
 version, 1, results);

FORTRAN: implicit none

 include "PGS_AA_10.f"
include "PGS_AA.f"
include "PGS_SMF.f"

 integer pgs_aa_2dread
character*99 parms(PGSd_AA_MAXNOCACHES)
integer nParms
integer xStart
integer yStart
integer xDim
integer yDim
integer fileId
integer version
integer operation
PGSt_integer results(14, 20)
parms(1)= "OlsonWorldEcosystems1.3a"
nParms = 1
yStart = 102
xStart = 205
yDim = 20
xDim = 14
fileId = 10952
operation = 1
version = 1

 call pgs_aa_2dread(parms, nparms, xStart, yStart, xDim,
 yDim, fileId, version, operation,
 results)

NOTES: For further details of the background to these tools and the available data
sets, support files and the means by which new data sets can be introduced,
see the Toolkit Primer Ancillary Data section (info on how to access this
document can be found in the preface of the Users Guide) or appendix D
in this document. These also include details of the operations that can be
set by the user and the autoOperations associated with particular data sets.

 6-368 333-EED-001, Revision 02

 The FORTRAN result argument returned is not specified since it depends
on the data set used; e.g., it could be real or integer.

 The upper limit of the range of input variables is data set specific. The
parms input variable is a parameter and data set specific set of strings. The
results buffer is a memory buffer holding whatever data is extracted form
the data set requested by the user. It can hold data of 4 types (long, short,
float, double).

 It is critical that the results buffer be declared to be of the same type as that
found in the first element of the support file (or PGSt_integer for short
/long when working in FORTRAN) and be dimensioned to exactly contain
the requested dimensions.

REQUIREMENTS: PGSTK–0931, PGSTK–0980, PGSTK–1000, PGSTK–1030,
PGSTK–1360, PGSTK–1362

 6-369 333-EED-001, Revision 02

Extract Data from Gridded Data Sets by File Structure Parameters

NAME: PGS_AA_3DRead()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_3DRead(
 char iparms[][100],
 PGSt_integer nParms
 PGSt_integer xStart
 PGSt_integer yStart
 PGSt_integer zStart
 PGSt_integer xDim
 PGSt_integer yDim
 PGSt_integer zDim
 PGSt_integer fileId
 PGSt_integer version
 PGSt_integer operation
 void *results)

FORTRAN: include 'PGS_AA_10.f'
include "PGS_AA.f"

 integer function
pgs_aa_3dread(iparms, nparms, xStart, yStart, zStart, xDim, yDim, zDim,
 fileId, version, operation, results)
 character*99 iparms(*)
 integer nParms,
 integer xStart,
 integer yStart,
 integer zStart,
 integer xDim,
 integer yDim,
 integer zDim,
 integer fileId,
 integer version,
 integer operation,
 'user specified' results (see Notes)

 6-370 333-EED-001, Revision 02

DESCRIPTION: The user specifies a parameter, a fileId and version from which the data
are to be extracted using the file structure coordinates. Since this tool is
similar to the other AA geo and Read tools, a single explanation of the
interface is provided in Appendix D.3.

 The interface to the calling algorithm that accepts the arguments and calls
PGS_AA_Map, PGS_AA_GetSupp, PGS_AA_FF_Setup and
PGS_AA_3DReadGrid. The first 3 of these modules determine the
validity of the call and initialize support and load the identified data into
memory. PGS_AA_3DReadGrid performs the extraction requested from
the input arguments

 [start]
PERFORM PGS_AA_Map
PERFORM PGS_AA_GetSupp to get support data
DO allocate memory to parmBuffer using
 totalParmMemoryCache
PERFORM PGS_AA_FF_Setup
PERFORM PGS_AA_3DReadGrid
[end]

INPUTS:

Table 6-162. PGS_AA_3DRead Inputs
Name Description Units Min Max

parms parameter names requested see notes
nParms number of parms none 1 #defined
xStart the x start point none 1 variable
yStart the y start point none 1 variable
zStart he z start point none 1 variable
xDim the x dimension none 1 variable
yDim the y dimension none 1 variable
zDim the z dimension none 1 variable
fileId logical file number none variable variable
version version of dynamic file none 1 variable
operation defines user required none 1 variable

OUTPUTS:

Table 6-163. PGS_AA_3DRead Outputs
Name Description Units Min Max

results results see notes

 6-371 333-EED-001, Revision 02

RETURNS:

Table 6-164. PGS_AA_3DRead Returns
To User/Log File Return Description

u PGSAA_E_SUPPORTFILE Support or format files inaccessible
ul PGSAA_E_PARMSNOTFOUND Parameter(s) not found in the support support file
l PGSAA_E_DATARATEUNSET dataRate attribute unset in support file

ul PGSAA_E_PARMSFROMANYFILES Parameters requested from more than one
physical file

ul PGSAA_E_INVALIDNOPARMS No of parms incorrect
ul PGSAA_E_BADSUPPSUPPORT Tool support file is corrupted or incomplete
ul PGSAA_E_CANTFINDFILE Format of input data file inaccessible
u PGSAA_E_FFERROR A freeform error has occured
l PGSAA_E_FFDBIN Failure in Freeform make_dbin function
l PGSAA_E_FFDBSET Failure in Freeform db_set function
l PGSAA_E_FFDBEVENTS Failure in Freeform db_events function

ul PGSAA_E_MALLOC Failure to malloc
u PGSAA_E_PEV_ERROR An error has occurred in the PeV tool
l PGSAA_E_PEV_XS_SUPPFILES Too many PeVA files open, increase MAXFILES
l PGSAA_E_CANT_GET_VALUE Unable to extract value from dbin
l PGSAA_E_GETDBIN Error in PeVA tool obtaining dbin
u PGSAA_E_GETSUPP An error was detected while extracting support

data
l PGSAA_E_POSITION_CALC_FAILURE The position in the parmBuffer of the requested

values was miscalculated
u PGSAA_E_THREED_READ_ERROR Function failure to read parameter values from

buffer
l PGSAA_E_EXTRACTORESULTSERROR Failure to transfer selected values from

parmBuffer to results
ul PGSAA_E_OUTOFRANGE Input values out of data set range

EXAMPLE:

C: PGSt_SMF_status retStatus;

 char parms[PGSs_AA_MAXNOCACHES][100] = {
 "nmcRucSigPres","nmcRucSigPot"};
 PGSt_integer xStart = 30;
 PGSt_integer yStart = 20;
 PGSt_integer zStart = 2;
 PGSt_integer xDim = 6;
 PGSt_integer yDim = 4;
 PGSt_integer zDim = 2;
 PGSt_integer fileId = 10972; /* contains interleaved
 parms */

 float results[2][4][6][2]; /* height,lat,long,parm */

 6-372 333-EED-001, Revision 02

 PGSt_integer nParms = 2

 PGSt_SMF_status = PGS_AA_3DRead (iparms, nParms, xStart,
 yStart, zStart, xDim, yDim,
 zDim, fileId, 1, 2
 results);

FORTRAN: implicit none

 include "PGS_AA_10.f"
include "PGS_AA.f"
include "PGS_SMF.f"

 integer pgs_aa_3dread
character*99 parms(PGSd_AA_MAXNOCACHES)
integer nParms
integer xStart
integer yStart
integer zStart
integer xDim
integer yDim
integer zDim
integer fileId
integer version
integer operation

 integer result(2,50,20,2)
parms(1)= "nmcRucSigPot"
parms(2)= "nmcRucSigPres"
nParms=2
yStart=102
xStart=205
zStart=2
yDim=20
xDim=50
zDim=2
fileId=10972
operation=2
version = 1

 call pgs_aa_3dread(iparms, nparms, xStart, yStart, zStart,
 xDim, yDim, zDim, fileId, version,
 operation, results)

 6-373 333-EED-001, Revision 02

NOTES: For further details of the background to these tools and the available data
sets, support files and the means by which new data sets can be introduced,
see the Toolkit Primer Ancillary Data section (info on how to access this
document can be found in the preface of the Users Guide) or Appendix D
in this document. These also include details of the operations that can be
set by the user and the autoOperations associated with particular data sets.

 The FORTRAN result argument returned is not specified since it depends
on the data set used; e.g., it could be real or integer.

 The upper limit of the range of input variables is data set specific. The
parms input variable is a parameter and data set specific set of strings. The
results buffer is a memory buffer holding whatever data is extracted form
the data set requested by the user. It can hold data of 4 types (long, short,
float, double).

 It is critical that the results buffer be declared to be of the same type as that
found in the first element of the support file (or PGSt_integer for short
/long when working in FORTRAN) and be dimensioned to exactly contain
the requested dimensions.

REQUIREMENTS: PGSTK–0931, PGSTK–1360, PGSTK–1362

 6-374 333-EED-001, Revision 02

6.3.3 Celestial Body Position Tools
The tools included in this section provide the user with information about the locations of
celestial bodies (sun, moon, major planets and bright stars). The vector from the Earth or the
spacecraft can be computed and the presence of a body in the instrument field of view can be
detected.

6.3.3.1 Celestial Body Position Tool Notes

The following notes apply to several of the Celestial Body Position Tools.

TIME RANGE OF CELESTIAL BODY EPHEMERIS

The EOSDIS version of the JPL DE200 ephemeris which is used for the celestial body positions
is valid from Dec 14, 1949 through Jan 1, 2021. The user’s calling times are internally translated
to TDT (dynamical time, similar to the old “ephemeris time”) before being used to access the
epehemeris itself. This translation depends on leap seconds information. If the leap seconds file
is not up to date the error message “PGSTD_NO_LEAP_SECS” is returned but processing
continues. Since leap seconds are normally available only six months in advance, results for far
future simulations cannot be guaranteed. On the other hand, as time passes, with the leap seconds
file properly updated by automatic Toolkit procedures, the positions calculated at any given time,
for past times, for the present date, or a few months in advance will be reliable.

TIME OFFSETS:

These functions accept an ASCII UTC time, an array of time offsets and the number of offsets as
input. Each element in the offset array is an offset in seconds relative to the initial input ASCII
UTC time.

An error will be returned if the number of offsets specified is less than zero. If the number of
offsets specified is actually zero, the offsets array will be ignored. In this case the input ASCII
UTC time will be converted to Toolkit internal time (TAI) and this time will be used to process
the data. If the number of offsets specified is one (1) or greater, the input ASCII UTC time will
be converted to TAI and each element 'i' of the input data will be processed at the time: (initial
time) + (offset[i]).

Examples:

 if numValues is 0 and asciiUTC is "1993-001T12:00:00" (TAI: 432000.0),
then input[0] will be processed at time 432000.0 and return output[0]

 if numValues is 1 and asciiUTC is "1993-001T12:00:00" (TAI: 432000.0),
then input[0] will be processed at time 432000.0 + offsets[0] and
return output[0]

 if numValues is N and asciiUTC is "1993-001T12:00:00" (TAI: 432000.0),
then each input[i] will be processed at time 432000.0 + offsets[i] and
the result will be output[i], where i is on the interval [0,N)

 6-375 333-EED-001, Revision 02

ERROR HANDLING:

These functions process data over an array of times (specified by an input ASCII UTC time and
an array of time offsets relative to that time).

If processing at each input time is successful the return status of these functions will be
PGS_S_SUCCESS (status level of 'S').

If processing at ALL input times was unsuccessful the status level of the return status of these
functions will be 'E'.

If processing at some (but not all) input times was unsuccessful the status level (see SMF) of the
return status of these functions will be 'W' AND all high precision real number (C: PGSt_double,
FORTRAN: DOUBLE PRECISION) output variables that correspond to the times for which
processing was NOT successful will be set to the value: PGSd_GEO_ERROR_VALUE. In this
case users may (should) loop through the output testing any one of the aforementioned output
variables against the value PGSd_GEO_ERROR_VALUE. This indicates that there was an error
in processing at the corresponding input time and no useful output data was produced for
that time.

Note: A return status with a status level of 'W' does not necessarily mean that some of the data
could not be processed. The 'W' level may indicate a general condition that the user may need to
be aware of but that did not prohibit processing. For example, if an Earth ellipsoid model is
required, but the user supplied value is undefined, the WGS84 model will be used, and
processing will continue normally, except that the return status will have a status level of 'W' to
alert the user that the default earth model was used and not the one specified by the user. The
reporting of such general warnings takes precedence over the generic warning (see RETURNS
above) that processing was not successful at some of the requested times. Therefore in the case of
any return status of level 'W', the returned value of a high precision real variable generally should
be examined for errors at each time offset, as specified above.

EPHEMERIS AND ATTITUDE DATA QUALITY CONTROL:

Some of the Celestial Body Positioning tools access spacecraft ephemeris and/or attitude data in
order to effect their respective transformations. In these cases users may define "masks" for the
two data quality flags (ephemeris and attitude) associated with spacecraft ephemeris data. The
quality flags are (currently) four byte entities (may be 8 bytes on the cray but only the first four
bytes will be considered) that are interpreted bit by bit for meaning (see Section L.3 Quality
Flags). Currently the only "fatal" bit (i.e. indicating meaningless data) that will be set prior to
access by the Toolkit is bit 16 (where the least significant bit is bit 0). Additionally, the Toolkit
will set bit 12 of the quality flag returned for a given user input time if NO data is found for that
input time. Note that this usage is different from most of the other bits which indicate the state
of some existing data point. By default the Toolkit will set the mask for each of the quality flags
to include bit 16 (fatally flawed data) and bit 12 (no data). This means that any data points
returned from the tool PGS_EPH_EphemAttit() with an associated quality flag that has either bit
12 or bit 16 set will be rejected by any TOOLKIT function that makes a call to
PGS_EPH_EphemAttit() (e.g. these CBP tools) (note that masking is not applied in the tool

 6-376 333-EED-001, Revision 02

PGS_EPH_EphemAttit() itself since users calling this tool directly can examine the quality flags
themselves and make their own determination as to which data points to use or reject).

Users may use the Process Control File (PCF) to define their own masks which the Toolkit will
then use instead of the defaults mentioned above. The user defined mask should set any bit
which the user considers fatal for their purpose (e.g. red limit exceeded). WARNING: if the user
defined mask does not have bit 16 set, the Toolkit will pass through data the associated quality
flag of which has bit 16 set. The toolkit will not, however, process any data points if the
associated quality flag has bit 12 set (i.e. no data exists) whether or not the user mask has bit 12
explicitly set.

Below are the PCF entries which control the value of these masks:

The following parameter is a "mask" for the ephemeris data quality
flag. The value should be specified as an unsigned integer
specifying those bits of the ephemeris data quality flag that
should be considered fatal (i.e. the ephemeris data associated
with the quality flag should be REJECTED/IGNORED).

10507|ephemeris data quality flag mask|65536

The following parameter is a "mask" for the attitude data quality
flag. The value should be specified as an unsigned integer
specifying those bits of the attitude data quality flag that
should be considered fatal (i.e. the attitude data associated
with the quality flag should be REJECTED/IGNORED).

10508|attitude data quality flag mask|65536

Note that in the examples above, the value 65536 is the unsigned integer equivalant of a 32 bit
binary counter with bits 12 and 16 set. See section 6.2.3 (Process Control Tools) and (Appendix
C Process Control Files) for a detailed explanation of the use of the Process Control File.

REFERENCES:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical
Almanac, Explanatory Supplement to the Astronomical Almanac. Theoretical Basis of the SDP
Toolkit Geolocation Package for the ECS Project”, Document 445-TP-002-002, May 1995, by P.
Noerdlinger.

 6-377 333-EED-001, Revision 02

Compute Earth to Celestial Body ECI Vector

NAME: PGS_CBP_Earth_CB_Vector()

SYNOPSIS:

C: #include <PGS_CBP.h>

 PGSt_SMF_status
PGS_CBP_Earth_CB_Vector(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_integer cbId,
 PGSt_double cbVectors[][3])

FORTRAN: include 'PGS_CBP.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'
include 'PGS_CBP_6.f'
include 'PGS_TD_3.f'

 integer function
pgs_cbp_earth_cb_vector(numvalues,asciiutc,offsets,cbid,cbvectors)
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer cbid
 double precision cbvectors(3,*)

DESCRIPTION: This function computes the Earth–Centered Inertial (ECI J2000) frame
vector from the Earth to the selected bodies of Solar System.

INPUTS

Table 6-165. PGS_CBP_Earth_CB_Vector Inputs
NAME DESCRIPTION UNITS MIN MAX

asciiUTC UTC time in CCSDS ASCII Time Code A OR B
format

time 1961–01–01 see NOTES

offsets array of offsets of each input UTC time seconds see NOTES see NOTES
cbId identifier of celestialbody (see list below) N/A 1 13
numValues number of required data points

0—only asciiUTC in used
any—any time events are used

N/A 0 any

 6-378 333-EED-001, Revision 02

 THE DESIGNATION OF THE ASTRONOMICAL BODIES BY
CELESTIAL BODY IDENTIFIER (cbId) IS:

 cbId =

 1 = MERCURY 8 = NEPTUNE
2 = VENUS 9 = PLUTO
3 = EARTH 10 = MOON
4 = MARS 11 = SUN
5 = JUPITER 12 = SOLAR–SYSTEM BARYCENTER
6 = SATURN 13 = EARTH–MOON BARYCENTER
7 = URANUS

OUTPUTS:

Table 6-166. PGS_CBP_Earth_CB_Vector Outputs
NAME DESCRIPTION UNITS MIN MAX

cbVectors[][3] ECI unit vectors from Earth to celestial body
first subscript for each time event specified
second subscript gives position vector

meter see NOTES see NOTES

RETURNS:

Table 6-167. PGS_CBP_Earth_CB_Vector Returns
Return Description

PGS_S_SUCCESS Successful completion
PGSCBP_W_EARTH_CB_ID Earth cbId is specified
PGSCBP_E_INVALID_CB_ID Invalid celestial body identifier
PGSTD_E_BAD_INITIAL_TIME Initial input time can not be deciphered
PGSCBP_E_BAD_ARRAY_SIZE Incorrect array size
PGSCBP_E_UNABLE_TO_OPEN_FILE Ephemeris file can not be opened
PGSCBP_E_TIME_OUT_OF_RANGE Initial time is outside the ephemeris bounds
PGSTD_E_NO_LEAP_SECS No leap second correction available
PGSCBP_W_BAD_CB_VECTOR One or more errors in CB vectors
PGS_E_TOOLKIT For unknown errors

 6-379 333-EED-001, Revision 02

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer cbId = 10;
PGSt_integer numValues;
char asciiUTC[28] = "2002-07-
 27T11:04:57.987654Z";
PGSt_double offsets[ARRAY_SIZE] = {3600.0, 7200.0,
 10800.0};
PGSt_double cbVectors[ARRAY_SIZE][3];

 char err[PGS_SMF_MAX_MNEMONIC_SIZE];
char msg[PGS_SMF_MAX_MSG_SIZE];

 numValues = ARRAY_SIZE;

 returnStatus = PGS_CBP_Earth_CB_Vector(numValues, asciiUTC,
 offsets, cbId,
 cbVectors)

 if (returnStatus != PGS_S_SUCCESS)
{
 PGS_SMF_GetMsg(&returnStatus, err, msg);
 printf ("ERROR: %s\n", msg);
}

FORTRAN: implicit none

 integer pgs_cbp_earth_cb_vector
integer returnstatus
integer cbid
integer numvalues

 double precision offsets(3)
double precision cbvectors(3,3)

 character*27 asciiutc
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 asciiutc = '2002-07-27T11:04:57.987654Z'
cbid = 10
numvalues = 3

 returnstatus = pgs_cbp_earth_cb_vector(numvalues, asciiutc,
 offsets, cbid,
 cbvectors)

 6-380 333-EED-001, Revision 02

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: See Section 6.3.3.1 Celestial Body Position Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

REQUIREMENTS: PGSTK–0800

 6-381 333-EED-001, Revision 02

Compute Satellite to Celestial Body Vector in
Spacecraft Reference Frame

NAME: PGS_CBP_Sat_CB_Vector()

SYNOPSIS:

C: #include <PGS_CBP.h>

 PGSt_SMF_status
PGS_CBP_Sat_CB_Vector(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_integer cbId,
 PGSt_double cbVectors[][3])

FORTRAN: include 'PGS_CBP.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'
include 'PGS_CBP_6.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'

 integer function
pgs_cbp_sat_cbvectors(spacecrafttag,numvalues,asciiutc,offsets,cbid,
 cbvectors)

 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer cbid
 double precision cbvectors(3,*)

DESCRIPTION: This function computes the vector in the spacecraft reference frame from
the spacecraft to the sun, moon, or planets at a given time or range
of times.

 6-382 333-EED-001, Revision 02

INPUTS:

Table 6-168. PGS_CBP_Sat_CB_Vector Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft identifier N/A N/A N/A
numValues number of required data points:

0—only asciiUTC is used
any—any time events are used

N/A 0 any

asciiUTC [28] UTC time in CCSDS ASCII Time code A or B format time 1961–01–01 see NOTES
offsets[] array of time offsets from asciiUTC in seconds seconds see NOTES see NOTES
cbId identifier of celestial bodies (see list below) N/A N/A N/A

 THE DESIGNATION OF THE ASTRONOMICAL BODIES BY
CELESTIAL BODY IDENTIFIER (cbId) IS:

 cbId =
 1 = MERCURY 8 = NEPTUNE

2 = VENUS 9 = PLUTO
3 = EARTH 10 = MOON
4 = MARS 11 = SUN
5 = JUPITER 12 = SOLAR–SYSTEM BARYCENTER
6 = SATURN 13 = EARTH–MOON BARYCENTER
7 = URANUS

OUTPUTS:

Table 6-169. PGS_CBP_Sat_CB_Vector Outputs
Name Description Units Min Max

cbVectors[][3] vectors in spacecraft reference frame from satellite to
the celestial body for each time event

meter see NOTES see NOTES

RETURNS:

Table 6-170. PGS_CBP_Sat_CB_Vector Returns (1 of 2)
Return Description

PGS_S_SUCCESS Success
PGSCSC_W_BELOW_SURFACE Output vector from ECItoSC below surface
PGSCBP_W_BAD_CB_VECTOR One or more bad vectors for requested times
PGSCBP_E_BAD_ARRAY_SIZE numvalues is less than 0
PGSCBP_E_INVALID_CB_ID Invalid celestial body identifier
PGSMEM_E_NO_MEMORY Not enough memory for tmpVectors

 6-383 333-EED-001, Revision 02

Table 6-170. PGS_CBP_Sat_CB_Vector Returns (2 of 2)
Return Description

PGSCBP_E_UNABLE_TO_OPEN_FILE Unable to open planetary data file
PGSTD_E_BAD_INITIAL_TIME Initial time is incorrect
PGSCBP_E_TIME_OUT_OF_RANGE Initial time is outside the ephemeris bounds
PGSTD_E_SC_TAG_UNKNOWN Invalid spacecraft tag
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times
PGS_E_TOOLKIT Toolkit error

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;

 PGSt_integer numValues = ARRAY_SIZE;

 PGSt_double cbVectors[ARRAY_SIZE][3];
PGSt_double offsets[ARRAY_SIZE] = {3600.0,
 7200.0, 10800.0};

 char asciiUTC[28] = "2002-07-
 27T11:04:57.987654Z";
char err[PGS_SMF_MAX_MNEMONIC_SIZE];
char msg[PGS_SMF_MAX_MSG_SIZE];

 returnStatus = PGS_CBP_Sat_CB_Vector(PGSd_EOS_AM, numValues,
 asciiUTC, offsets,
 PGSd_MOON, cbVectors);

 if (returnStatus != PGS_S_SUCCESS)
{
 PGS_SMF_GetMsg(&returnStatus, err, msg);
 printf ("ERROR: %s\n", msg);
}

FORTRAN: implicit none

 integer pgs_cbp_sat_cb_vector
integer numvalues
character*27 asciiutc
double precision offsets(3)
integer cbid
double precision cbvectors(3,3)

 6-384 333-EED-001, Revision 02

 character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 asciiutc = "2002-07-27T11:04:57.987654Z"
cbid = 10
numvalues = 3

 returnstatus = pgs_cbp_sat_cb_vector(pgsd_eos_am, numvalues,
> asciiutc, offsets,
> pgsd_moon, cbvector)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: See Section 6.3.3.1. Celestial Body Position Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–0680, PGSTK–0810

 6-385 333-EED-001, Revision 02

Get Solar Time and Coordinates

NAME: PGS_CBP_SolarTimeCoords()

SYNOPSIS:

C: #include <PGS_CBP.h>

 PGSt_SMF_status
PGS_CBP_SolarTimeCoords(
 char asciiUTC[28],
 PGSt_double longitude,
 PGSt_double *meanSolTimG,
 PGSt_double *meanSolTimL,
 PGSt_double *apparSolTimL,
 PGSt_double *solRA,
 PGSt_double *solDec)

FORTRAN: include 'PGS_SMF.f'
include 'PGS_TD_3.f'

 integer function pgs_cbp_solartimecoords(asciiutc, longitude,
 meansoltimg, meansoltiml,
 apparsoltiml, solra, soldec)
 character*27 asciiutc
 double precision longitude
 double precision meansoltimg
 double precision meansoltiml
 double precision apparsoltiml
 double precision solra
 double precision soldec

DESCRIPTION This tool performs a low accuracy rapid calculation of solar time and
coordinates. The accuracy of the equations here is expected to be about 0.5
minutes of time and 0.04 degrees for the coordinates of the sun.

 6-386 333-EED-001, Revision 02

INPUTS:

Table 6-171. PGS_CBP_SolarTimeCoords Inputs
Name Description Units Min Max

asciiUTC Coordinated Universal Time in CCSDS ASCII
Time Code A or B format

N/A See NOTES See NOTES

longitude longitude of observer (positive is East) Not
required for solar coordinates; should be set to 0
in that case

radians -pi pi

OUTPUTS:

Table 6-172. PGS_CBP_SolarTimeCoords Outputs
Name Description Units Min Max

meanSolTimG Greenwich Mean Solar Time as seconds from midnight seconds 0 86400
meanSolTimL Local Mean Solar Time as seconds from midnight seconds 0 86400
apparSolTimL Local Apparent Solar Time as seconds from midnight seconds 0 86400
solRA Right Ascension of the Mean sun radians 0 2*pi
solDec Declination of the Mean sun radians -pi pi

RETURNS:

Table 6-173. PGS_CBP_SolarTimeCoords Returns
Return Description

PGS_S_SUCCESS Successful execution
PGSTD_M_LEAP_SEC_IGNORED Input leap second has been ignored
PGSTD_E_TIME_FORMAT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGS_E_TOOLKIT Something unexpected happened, execution aborted

EXAMPLES:

C: PGSt_SMF_status returnStatus;

char asciiUTC[28];
PGSt_double longitude;
PGSt_double meanSolTimG;
PGSt_double meanSolTimL;

 6-387 333-EED-001, Revision 02

PGSt_double solRA;
PGSt_double solDec;

 strcpy(asciiUTC,"1991-01-01T11:29:30");
returnStatus = PGS_CBP_SolarTimeCoords(asciiUTC,longitude,
 &meanSolTimG,
 &meanSolTimL,
 &apparSolTimL,
 &solRA,&solDec)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}
printf("start time:%s",asciiUTC);
printf("\n longitude: %lf",longitude);

 printf("Greenwich Mean Solar Time:%lf Local Mean Solar
 Time:%lf", meanSolTimG,meanSolTimL);
printf("\n Local Apparent Solar Time:%lf Solar Right
 Asc/Dec:%lf/%lf", apparSolTimL,solRA,solDec);

FORTRAN: implicit none

 integer pgs_cbp_solartimecoords
character*27 asciiutc
double precision longitude
double precision meansoltimg
double precision meansoltiml
double precision apparsoltiml
double precision solra
double precision soldec
integer returnstatus

 asciiutc = '1991-01-01T11:29:30'
longitude = 1.0

 returnstatus = pgs_cbp_solartimecoords(asciiutc,longitude,
 meansoltimg,
 meansoltiml,
 apparsoltiml,solra,
 soldec)

 if(returnstatus .ne. pgs_s_success) go to 90
write(6,*) asciiutc,longitude
write(6,*)meansoltimg,meansoltiml,apparsoltiml,solra,soldec

 6-388 333-EED-001, Revision 02

 90 write(6,99)returnstatus

 99 format('ERROR:',I50)

NOTES: The equations used in this function are referenced on page C24 of the
1994 Astronomical Almanac. They are low precision formulas that give
the apparent coordinates of the sun to a precision of 0.01 degrees and the
equation of time to a precision of 0.5 minutes between the years 1950 and
2050. Less accuracy is expected for dates before 1950 and after 2050.

 More accurate solar time determination requires improved solar
coordinates and the value of UT1–UTC. These items are accessible
through other SDP tools.

 In particular, the Solar ephemeris yields accurate solar coordinates and the
function PGS_TD_gmst() gives Greenwich Mean Sidereal Time. These
can be combined to obtain more accurate Mean Solar Time. The difference
UT1–UTC is determined within the coordinate system conversion (CSC)
group of functions, in the transformations between Earth Centered
Rotating (ECR) and Earth Centered Inertial (ECI).

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

REQUIREMENTS: PGSTK–0760

 6-389 333-EED-001, Revision 02

Celestial Body in Field–of–View Indicator

NAME: PGS_CBP_body_inFOV()

SYNOPSIS:

C: #include <PGS_TD.h>
#include <PGS_CSC.h>
#include <PGS_CBP.h>
#include <PGS_EPH.h>
#include <PGS_MEM.h>

 PGSt_SMF_status
PGS_CBP_body_inFOV(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_tag spacecraftTag,
 PGSt_integer numFOVperimVec,
 PGSt_double inFOVvector[][3],
 PGSt_double *perimFOV_vectors,
 PGSt_tag cbID,
 PGSt_boolean inFOVflag[],
 PGSt_double cb_vector[][3],
 PGSt_double cb_SCvector[][3])

FORTRAN: include 'PGS_TD_3.f'
include 'PGS_CSC_4.f'
include 'PGS_CBP_4.f'
include 'PGS_EPH_4.f'
include 'PGS_MEM_4.f'
include 'PGS_SMF.f'

 integer function pgs_cbp_body_infov(numvalues,asciiutc,offsets,
 spacecrafttag,numfovperimvec,infovvector,
 perimfov_vectors,cbid,infovflag,cb_vector,
 cb_scvector)

 integer numvalues
character*27 asciiutc
double precision offsets(*)
integer spacecrafttag
integer numfovperimvec
double precision infovvector(*)
double precision perimfov_vectors(3,numfovperimvec,*)

 6-390 333-EED-001, Revision 02

integer cbid
integer infovflag(*)
double precision cb_vector(3,*)
double precision cb_scvector(3,*)

DESCRIPTION: Given a celestial body (CB) identifier (as in the CBP tools) and a field of
view (FOV) description, tool returns a flag or flags indicating if the CB is
in the FOV, as well as the coordinates of the CB in SC coordinates.
Alternatively, the user can specify CB identifier 999 or PGSd_STAR and
supply the ECI vector to the body.

INPUTS:

Table 6-174. PGS_CBP_body_inFOV Inputs
Name Description Units Min Max

numValues number of time gridpoints N/A 1 any
asciiUTC UTC start time N/A 1979–06–

30T00:00:01
2008–01–01T
12:00:00

spacecraftTag unique spacecraft identifier N/A N/A N/A
numFOVperimVec number of vectors defining

FOV perimeter
N/A 3 any

inFOVvector vector in FOV, in SC
coordinates

N/A N/A N/A

perimFOV_vectors vectors in SC coords defining
FOV's; MUST be sequential
around FOV; middle
dimension must be exactly the
same value as
numFOVperimVec because of
the way the array
dimensioning works in the
function.

N/A N/A N/A

cbId celestial body ID (Earth not
included—see
PGS_CSC_Earthpt_FOV)

N/A 1 13

cb_vector ECI vectors of CB (this is an
input only when cbId = 999,
meaning user input of ECI
vector for CB—see notes)

Arbitrary see
PGS_CBP_Earth_CB
_Vector

 6-391 333-EED-001, Revision 02

OUTPUTS:

Table 6-175. PGS_CBP_body_inFOV Outputs
Name Description Units Min Max

inFOVflag PGS_TRUE if CB is in FOV—see
notes

N/A N/A N/A

cb_SCvector vector of CB in SC coords notes meters see PGS_CBP_body_inFOV()
notes

RETURNS:

Table 6-176. PGS_CBP_body_inFOV Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location specified
PGSCBP_E_TIME_OUT_OF_RANGE Initial time is outside the ephemeris bounds
PGSTD_E_BAD_INITIAL_TIME Initial time is incorrect
PGSCBP_W_BAD_CB_VECTOR One or more bad vectors for requested times
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSCSC_W_DATA_FILE_MISSING The data file earthfigure.dat is missing
PGSCBP_E_UNABLE_TO_OPEN_FILE Unable to open file
PGSCBP_E_INVALID_CB_ID Invalid celestial body identifier
PGSCBP_W_EARTH_CB_ID The tool PGS_CSC_Earthpt_FOV() must be used to check for Earth

points in the FOV
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSCSC_E_BAD_ARRAY_SIZE Incorrect array size
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times
PGSEPH_E_NO_DATA_REQUESTED Both orb and att flags are set to false
PGSCSC_E_INVALID_FOV_DATA FOV perimeter vectors are invalid
PGSCSC_E_FOV_TOO_LARGE FOV specification outside algorithmic limits
PGS_E_TOOLKIT Something unexpected happened

EXAMPLES:
C: #define ARRAY_SIZE 3

#define PERIMVEC_SIZE 4
PGSt_SMF_status returnStatus;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_integer numValues;
PGSt_integer numFOVperimVec;

 6-392 333-EED-001, Revision 02

PGSt_double inFOVvector[ARRAY_SIZE][3] =
 { {0.0,0.0,100.0},
 {0.0,0.0,200.0},
 {0.0,0.0,300.0}
 };
PGSt_double
 perimFOV_vectors[ARRAY_SIZE][PERIMVEC_SIZE][3]=
 { {100.0,100.0,100.0},
 {-100.0,100.0,100.0},
 {-100.0,-100.0,100.0},
 {100.0,-100.0,100.0},
 {200.0,200.0,200.0},
 {-200.0,200.0,200.0},
 {-200.0,-200.0,200.0},
 {200.0,-200.0,200.0},
 {300.0,200.0,200.0},
 {-200.0,300.0,200.0},
 {-200.0,-300.0,300.0},
 {300.0,-200.0,200.0},
 };
PGSt_boolean inFOVflag[ARRAY_SIZE];
PGSt_double cb_SCvector[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
numFOVperimVec = PERIMVEC_SIZE;
strcpy(asciiUTC,"1995-06-21T11:29:30.123211Z");

 returnStatus = PGS_CBP_body_inFOV(numValues,asciiUTC,
 offsets,PGSd_TRMM,
 numFOVperimVec,
 inFOVvector,
 perimFOV_vectors,
 PGSD_MOON,
 inFOVflag,NULL,
 cb_SCvector);

 if(returnStatus != PGS_S_SUCCESS)|
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_cbp_body_infov
integer returnstatus
integer spacecrafttag

 6-393 333-EED-001, Revision 02

integer numvalues
character*27 asciiutc
double precision offsets(3)
integer spacecrafttag
integer numfovperimvec
double precision infovvector(3,3)
double precision perimfov_vectors(3,4,3)
integer cbid
integer infovflag(3)
double precision cb_vector(3,3)
double precision cb_scvector(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 infovvector(1,1) = 0.0
infovvector(1,2) = 0.0
infovvector(1,3) = 0.0

 infovvector(2,1) = 0.0
infovvector(2,2) = 0.0
infovvector(2,3) = 0.0

 infovvector(3,1) = 0.0
infovvector(3,2) = 0.0
infovvector(3,3) = 0.0

 perimfov_vectors(1,1,1) = 100.0
perimfov_vectors(2,1,1) = 100.0
perimfov_vectors(3,1,1) = 100.0

 perimfov_vectors(1,2,1) = -100.0
perimfov_vectors(2,2,1) = 100.0
perimfov_vectors(3,2,1) = 100.0

 perimfov_vectors(1,3,1) = -100.0
perimfov_vectors(2,3,1) = -100.0
perimfov_vectors(3,3,1) = 100.0

 perimfov_vectors(1,4,1) = 100.0
perimfov_vectors(2,4,1) = -100.0
perimfov_vectors(3,4,1) = 100.0

 perimfov_vectors(1,1,2) = 200.0
perimfov_vectors(2,1,2) = 200.0
perimfov_vectors(3,1,2) = 200.0

 6-394 333-EED-001, Revision 02

 perimfov_vectors(1,2,2) = -200.0
perimfov_vectors(2,2,2) = 200.0
perimfov_vectors(3,2,2) = 200.0

 perimfov_vectors(1,3,2) = -200.0
perimfov_vectors(2,3,2) = -200.0
perimfov_vectors(3,3,2) = 200.0

 perimfov_vectors(1,4,2) = 200.0
perimfov_vectors(2,4,2) = -200.0
perimfov_vectors(3,4,2) = 200.0

 perimfov_vectors(1,1,3) = 300.0
perimfov_vectors(2,1,3) = 300.0
perimfov_vectors(3,1,3) = 300.0

 perimfov_vectors(1,2,3) = -300.0
perimfov_vectors(2,2,3) = 300.0
perimfov_vectors(3,2,3) = 300.0

 perimfov_vectors(1,3,3) = -300.0
perimfov_vectors(2,3,3) = -300.0
perimfov_vectors(3,3,3) = 300.0

 perimfov_vectors(1,4,3) = 300.0
perimfov_vectors(2,4,3) = -300.0
perimfov_vectors(3,4,3) = 300.0

 asciiutc = '1995-06-21T11:04:57.987654Z'
numvalues = 3
numfovperimvec = 4

 returnstatus = pgs_cbp_body_infov(numvalues,asciiutc,
 offsets,PGSd_TRMM,
 numfovperimvec,
 infovvector,
 perimfov_vectors,moon,
 infovflag,null,
 cb_scvector);

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: The FOV is always specified in SC coordinates; for an instrument fixed to
the SC, use the same FOV description always; for scanning instruments,
user should provide the description appropriate to the scan instant.

 numFOVperim must be at least 3. The tool determines if any part of the
CB requested lies within the perimeter defined by the vectors
perimFOV_vectors[][][3]. The first index in C (last in FORTRAN) is the

 6-395 333-EED-001, Revision 02

time offset index, and the second MUST be sequential around the FOV
perimeter. The vector inFOVvector[][3] MUST lie within the FOV. It need
not be central, but there will be loss of efficiency if not. The last index in
C (first in FORTRAN) on these vectors is for X,Y and Z components in
SC coordinates. It is necessary for the user to supply a vector within the
FOV for the reason that on the surface of a sphere, a closed curve or
"perimeter" does not have an inside nor outside, except by arbitrary
definition; i.e., this vector tells the algorithm which part of sky is inside
FOV, which outside.

 The vectors "perimFOV_vectors[][][3]" defining the FOV perimeter can
be in clock- or counter-clockwise sequence .

 The tool may be used on the Sun, Moon, and planets other than the Earth,
in which case the cbID must be selected from the standard set (see the tool
PGS_CBP_Earth_CB_Vector()). The tool may also be used on another
object (such as a star), in which case cbID should be set = 999 and the ECI
J2000 coordinates of the star must be supplied in cb_vector[]. The Sun,
Moon and planets have finite radii, as specified in the Table below; CB's
with cdID = 999 (PGSd_STAR) are assumed to be of negligible radius.

 Note on Finite Size of CB: Since a primary use of this tool will be to
determine if the Sun, Moon, or a planet intrudes into the FOV, it is
important to allow for the finite size of the object. For this purpose, the
Moon and Planets are replaced with spheres of the following radii, which
are projected on the celestial sphere:

Table 6-177. Physical Radii for CB in FOV Tool
CB Radius (km) Explanation

Sun 7 e 5
Moon 1739 allows for topography
Mercury 2440
Venus 6055
Earth n/a use tool PGS_CSC_Earthpt_FOV()
Mars 3397 ignore satellites
Jupiter 1890 e 3 include Galilean satellites
Saturn 1225 e 3 include rings, satellites to Titan
Uranus 25600 planet only
Neptune 24800 planet only
Pluto 19600 planet and Charon
999 (STAR) 0.0 a star, or user–defined point

 In general, we have included satellites down to the 10th magnitude.

 In the case that the celestial body position is invalid for a particular time,
then the corresponding cb_SCvector will be set to
PGSd_GEO_ERROR_VALUE.

 6-396 333-EED-001, Revision 02

 If the CB disk overlaps the FOV only behind the Earth's equatorial bulge
and the overlap is barely hidden by it, and the FOV has a sharp corner
protruding past the Earth limb it is possible in rare cases that a false
positive answer will issue.

 See Section 6.3.3.1 Celestial Body Position Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–0780

 6-397 333-EED-001, Revision 02

6.3.4 Coordinate System Conversion Tools

6.3.4.1 Introduction

The ECI system is J2000. Thus in Fig. 6-2 the Z axis is along the Earth’s rotation axis at the
epoch of J2000. The ECR system is Earth fixed, i.e. rotating with the Earth. Since its definition
includes the effect of polar motion, then in Fig. 6-1 the Z axis is actually along geographic North,
which differs very slightly and variably (~ 3 to 15 meters) from the rotational North axis.

6.3.4.2 Unit Vectors for Input

In some functions, a unit vector or a set of unit vectors is required on input. In these cases, the
vectors are generally renormalized internally again, anyway, to prevent obscure errors. Thus,
generally, any vector defining the correct direction can be supplied; it need not be normalized.
An exception is in the transformations between ECI and Spacecraft Coordinates,
PGS_CSC_ECItoSC() and PGS_CSC_SCtoECI(). In these functions, the behavior is different
for unit vector input and for input vectors in meters. For these two functions, any input vector
whose length is between 0.99999 and 1.000001 is assumed to be a unit vector, while any other
vector is assumed to be measured in meters.

6.3.4.3 Other Specialized Vectors and Terminology

The vector along a line of sight from the spacecraft may be referred to as a "pixel vector" or
"look vector". It could be the boresight of an instrument or it could locate a point in a finite field
of view. The "look point" is the intersection of such a vector with the Earth ellipsoid. Vectors
designated by the name of a celestial body, such as the "Sun vector" are assumed to point from
Earth center or spacecraft center to the celestial body, depending on context. They are in meters
unless described as unit vectors. "Latitude" always means geodetic latitude, and the zenith vector
at Earth surface is always taken as the normal to the Earth ellipsoid. The "slant range" is from the
instrument boresight or spacecraft center to the look point (depending on the accuracy flag). The
"field of view" is always defined in spacecraft coordinates. The "subsatellite point" is at the foot
of a normal dropped from the spacecraft to the Earth ellipsoid, and its velocity what would be
measured by terrestrial instruments on the ellipsoid.

6.3.4.4 Altitudes; Altitude Warnings

In almost all the tools, such as transformations between ECR and Geodetic coordinates, in
PGS_CSC_GetFOV_Pixel(), and PGS_CSC_SubSatPoint() the altitude is defined in meters off
the Earth ellipsoid, as specified by the user through an Earth ellipsoid tag. If an invalid tag is
used, then the WGS84 ellipsoid is used. The altitude for PGS_CSC_ZenithAzimuth() is the
exception; it must be defined in meters off the geoid, because it is used to calculate air density to
correct the zenith angle for refraction when that correction is requested. The altitude is ignored
otherwise in PGS_CSC_ZenithAzimuth(). All the functions that input or output altitude, or
calculate it internally check for reasonableness. When large negative altitudes are input or
generated internally, warning messages issue to the log file, and a warning return will be given

 6-398 333-EED-001, Revision 02

unless there is a more serious problem. The exact depth used to trigger a warning varies
according to context. For example, in PGS_CSC_ECItoSC(), the depth can be as great as 0.02
Earth radii, on the supposition that in an extreme case the user might wish the coordinates of
some point that deep in the Earth, while in PGS_CSC_Earthpt_FOV() and
PGS_CSC_Earthpt_FixedFOV(), the warning is issued if the depth exceeds 50 km. Here, the
function is not just a coordinate transformation, but it informs the user if the point can be seen.
The 50 km tolerance allows that even if the Earth ellipsoid model is set by the user so large as to
include most of the atmosphere, and the Earth point is on the ocean floor, no warning will be
returned. For greater depths the point is deemed not to be visible and the answer always
PGS_FALSE. The maximum altitude of 100 km is set to include noctilucent clouds. Higher
altitudes will be processed, with the answer PGS_TRUE or PGS_FALSE according to the
geometry, but a warning is issued. This is the only case in which a large positive altitude results
in a warning, because of the context that one is talking about an "Earth point."

6.3.4.5 Lines of sight; visibility of points

The various functions do not check for obstruction of the line of sight by part of the spacecraft or
clouds, nor for the occultation of one celestial body by another. The tool
PGS_CSC_Earthpt_FOV() checks for occultation of the specified point by the solid Earth, i.e.,
on the far side, and PGS_CBP_body_inFOV() checks for occultation by the Earth; in those cases
a PGS_FALSE answer is reported.

6.3.4.6 Ranges for variables

The minimum and maximum values specified in the tables are often guidelines only and may not
be rigidly enforced. For example, a likely range is indicated for any one component of the
spacecraft velocity, but, in principle a velocity component could be anything up to escape
velocity. When angles such as latitude or longitude are input, they generally are not be checked
against the specified ranges. If they are out of range, the results may be unpredictable. The angles
are always in radians. An angle inadvertently supplied in degrees will usually lead to a wrong
answer rather than an error return. Various mathematical libraries that vendors supply with
compilers may also give degraded performance when given angles that are badly out of range.

6.3.4.7 Updating the UT1 and polar motion file
The file $PGSDAT/CSC/utcpole.dat contains information about UT1 and polar motion used by
many tools. Since this information changes with time, the file must be periodically updated. The
SDP Toolkit contains utilities to perform this update function. If a new leap second is issued, the
data in this file will change for dates after that second. Since the IERS can announce a leap
second on as little as 90 days notice, the file will contain data for only 83 days after its last
update; this allows time for the posting of a new data set by the U.S. N. O. as described below,
and for the running of the Toolkit update. Tools that depend on these data, such as
transformations between ECR and ECI, and tools that deliver UT1 or sidereal time, will fail and
issue an error return if they are provided input times past the end of the file. The Log Status file
will indicate the failure with a message including " PGSTD_E_NO_UT1_VALUE".

 6-399 333-EED-001, Revision 02

The shell script update_utcpole.sh, which is found in $PGSBIN, will update the utcpole.dat file
to the current date. To maintain a current utcpole.dat, this script should be run every week, but
twice a week is recommended for optimum accuracy (<~ 2m). The U.S. Naval Observatory file,
on which the update depends, is normally replaced by a current one by noon, Eastern Standard
Time, each Tuesday and Thursday. The accuracy is discussed in Section 6.2.7.5.2 .
Update_utcpole.sh calls PGS_CSC_UT1_update, a C program that performs most of the actual
update work. A Clear Case capable version update_utcpole_CC.sh is provided, as well, with this
version of the Toolkit. It must be used from within a Clear Case view belonging to the process
owner.

The update is done by collecting the latest information via ftp from United States Naval
Observatory in Washington, DC. Their file "finals.data" in the Series 7 directory within server
"maia.usno.navy.mil" contains information on UT1-UTC and the x and y pole displacements.
The utcpole.dat header contains the date of updating and the file date as listed within ftp for the
last "finals.data" used to update it. The function PGS_CSC_UT1_update reformats the new
finals.data information and adds it to the utcpole.dat file, overwriting any old information that is
superseded. At the DAACs, the process is done automatically by the scheduler. At Science
Computing Facilities, for Toolkits through version 5.2.1, drop 4, users will need to have a
".netrc" file in their home directories, as explained in the comments within the scripts. Later
releases will not need such a file.

6.3.4.8 Coordinate System Conversion Tool Notes

The following notes apply to several of the Coordinate System Conversion Tools.

TIME OFFSETS:

These functions accept an ASCII UTC time, an array of time offsets and the number of offsets as
input. Each element in the offset array is an offset in seconds relative to the initial input ASCII
UTC time.

An error will be returned if the number of offsets specified is less than zero. If the number of
offsets specified is actually zero, the offsets array will be ignored. In this case the input ASCII
UTC time will be converted to Toolkit internal time (TAI) and this time will be used to process
the data. If the number of offsets specified is one (1) or greater, the input ASCII UTC time will
be converted to TAI and each element 'i' of the input data will be processed at the time: (initial
time) + (offset[i]). It is recommended that users take advantage of the efficiency that can be
gained by processing many time values in one run, using offsets. Many of the tools have been
designed to run more efficiently when operating in this mode, and in some cases an internal limit
~30 to 50 has been set on error messaging to the log file in this mode, to prevent excessive
growth of the log file.

Examples:

 if numValues is 0 and asciiUTC is "1993-001T12:00:00" (TAI93: 432000.0),
then input[0] will be processed at time 432000.0 and return output[0]

 6-400 333-EED-001, Revision 02

 if numValues is 1 and asciiUTC is "1993-001T12:00:00" (TAI93: 432000.0),
then input[0] will be processed at time 432000.0 + offsets[0] and
return output[0]

 if numValues is N and asciiUTC is "1993-001T12:00:00" (TAI93: 432000.0),
then each input[i] will be processed at time 432000.0 + offsets[i] and
the result will be output[i], where i is on the interval [0,N)

ERROR HANDLING:

These functions process data over an array of times (specified by an input ASCII UTC time and
an array of time offsets relative to that time).

If processing at each input time is successful the return status of these functions will be
PGS_S_SUCCESS (status level of 'S').

If processing at ALL input times was unsuccessful the status level of the return status of these
functions will be 'E'.

If processing at some (but not all) input times was unsuccessful the status level (see SMF) of the
return status of this function will be 'W' AND all high precision real number (C: PGSt_double,
FORTRAN: DOUBLE PRECISION) output variables that correspond to the times for which
processing was NOT successful will be set to the value: PGSd_GEO_ERROR_VALUE. In this
case users may (should) loop through the output testing any one of the aforementioned output
variables against the value PGSd_GEO_ERROR_VALUE. This indicates that there was an error
in processing at the corresponding input time and no useful output data was produced for that
time.

Note: A return status with a status level of 'W' does not necessarily mean that some of the data
could not be processed. The 'W' level may indicate a general condition that the user may need to
be aware of but that did not prohibit processing. For example, if an Earth ellipsoid model is
required, but the user supplied value is undefined, the WGS84 model will be used, and
processing will continue normally, except that the return status will have a status level of 'W' to
alert the user that the default earth model was used and not the one specified by the user. The
reporting of such general warnings takes precedence over the generic warning (see RETURNS
section of the tool of interest) that processing was not successful at some of the requested times.
Therefore in the case of any return status of level 'W', the returned value of a high precision real
variable generally should be examined for errors at each time offset, as specified above.

EPHEMERIS AND ATTITUDE DATA QUALITY CONTROL:

Many of the Coordinate System Conversion tools access spacecraft ephemeris and/or attitude
data in order to effect their respective transformations. In these cases users may define "masks"
for the two data quality flags (ephemeris and attitude) associated with spacecraft ephemeris data.
The quality flags are (currently) four byte entities (may be 8 bytes on the cray but only the first
four bytes will be considered) that are interpreted bit by bit for meaning (see Section L.3 Quality
Flags). Currently the only "fatal" bit (i.e. indicating meaningless data) that will be set prior to
access by the Toolkit is bit 16 (where the least significant bit is bit 0). Additionally, the Toolkit

 6-401 333-EED-001, Revision 02

will set bit 12 of the quality flag returned for a given user input time if NO data is found for that
input time. Note that this usage is different from most of the other bits which indicate the state
of some existing data point. By default the Toolkit will set the mask for each of the quality flags
to include bit 16 (fatally flawed data) and bit 12 (no data). This means that any data points
returned from the tool PGS_EPH_EphemAttit() with an associated quality flag that has either bit
12 or bit 16 set will be rejected by any TOOLKIT function that makes a call to
PGS_EPH_EphemAttit() (e.g. these CSC tools) (note that masking is not applied in the tool
PGS_EPH_EphemAttit() itself since users calling this tool directly can examine the quality flags
themselves and make their own determination as to which data points to use or reject).

Users may use the Process Control File (PCF) to define their own masks which the Toolkit will
then use instead of the defaults mentioned above. The user defined mask should set any bit
which the user considers fatal for their purpose (e.g. red limit exceeded). WARNING: if the user
defined mask does not have bit 16 set, the Toolkit will pass through data the associated quality
flag of which has bit 16 set. The toolkit will not, however, process any data points if the
associated quality flag has bit 12 set (i.e. no data exists) whether or not the user mask has bit 12
explicitly set.

Below are the PCF entries which control the value of these masks:

The following parameter is a "mask" for the ephemeris data quality
flag. The value should be specified as an unsigned integer
specifying those bits of the ephemeris data quality flag that
should be considered fatal (i.e. the ephemeris data associated
with the quality flag should be REJECTED/IGNORED).

10507|ephemeris data quality flag mask|65536

The following parameter is a "mask" for the attitude data quality
flag. The value should be specified as an unsigned integer
specifying those bits of the attitude data quality flag that
should be considered fatal (i.e. the attitude data associated
with the quality flag should be REJECTED/IGNORED).

10508|attitude data quality flag mask|65536

Note that in the examples above, the value 65536 is the unsigned integer equivalant of a 32 bit
binary counter with bits 12 and 16 set. See section 6.2.3 (Process Control Tools) and (Appendix
C Process Control Files) for a detailed explanation of the use of the Process Control File.

6.3.4.9 Coordinate System Conversion Transformation Tools

These tools convert between various coordinate systems. This will allow calculations to be
computed in the most appropriate coordinate system and allow the conversion of results to a
common reference frame. Previously these coordinate transformations were contained in one tool

 6-402 333-EED-001, Revision 02

entitled PGS_CSC_FrameChange. We have provided separate calls for each transformation, as
one tool proved unwieldy. Also, the user now need not supply extraneous parameters not needed
for the desired conversion.

Figures 6–1 through 6–3 show the definitions of the ECR, ECI, and orbital (Orb) reference
frames.

The spacecraft coordinate system coincides with the orbital system when all the Euler angles are
zero. Otherwise, it is rotated by the amount indicated by the Euler angles. Thus, a small,
positive roll angle indicates that its right side is lowered, and its left side raised. A small positive
pitch angle indicates that its nose is raised and thrusters depressed. A small positive zero angle
indicates that it is crabbing with its nose to the right of the flight path.

 6-403 333-EED-001, Revision 02

Equator

X

Y

 EARTH-CENTERED ROTATING (ECR) COORDINATES

 Origin: Center of the Earth
 Z-Axis: along Earth's rotational axis, with north positive
 X-Y Plane: Earth's equator
 X-Axis: directed toward the prime (Greenwich) meridian
 Y- Axis: 90 deg from X and Z, completing a right-handed
 system

ZGreenwich
Meridian

Figure 6-1. Earth-Centered Rotating (ERC) Coordinates

 6-404 333-EED-001, Revision 02

E q u a t o r

X

Y

 E A R T H - C E N T E R E D I N E R T I A L (

 O r i g in : C e n t e r o f t h e E a
 Z - A x i s : a l o n g E a r t h ' s r o
 X - Y P l a n e : E a r t h ' s e q u a
 X - A x i s : d i r e c t e d t o w a r d
 Y - A x i s : 9 0 d e g f r o m X

V e r n a l
E q u i n o x

s y s t e m

T o

Z

Figure 6-2. Earth Centered Inertial (ECI) Coordinates

 6-405 333-EED-001, Revision 02

X, Y, Z are inertial coordinates. x, y, z are orbital coordinates, defined as
follows:

Origin: Spacecraft Center of Mass
x-z plane: Spacecraft orbital plane

+y (pitch) - Axis: oriented normal to the orbit plane with positive sense
opposite to that of the orbit's angular momentum vector H.

+z (yaw) - Axis: positively oriented earthward parallel to the satellite
radius vector R from the spacecraft center of mass to the center of the
Earth

+x (roll) - Axis: positively oriented in the direction of orbital flight
completing an orthogonal triad with y and z.

Figure 6-3. Relationship Between Earth-Centered Inertial (ECI)
Coordinates and Orbital Coordinates

 6-406 333-EED-001, Revision 02

Transform from ECI to ECR Coordinates

NAME: PGS_CSC_ECItoECR()

SYNOPSIS:
C: #include <PGS_CSC.h>

#include <PGS_TD.h>
 PGSt_SMF_status

PGS_CSC_ECItoECR(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posvelECI[][6],
 PGSt_double posvelECR[][6])

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_ecitoecr (numvalues,asciiutc,offsets,posveleci,posvelecr)
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision posveleci(6,*)
 double precision posvelecr(6,*)

DESCRIPTION: This function rotates an array of 6-vectors from ECI (J2000) coordinates to
ECR (of date) coordinates. The rotation is done in 4 parts: precession,
nutation, Earth rotation about the nutated axis, and polar motion
(correction from the rotational North to geographic North).

 6-407 333-EED-001, Revision 02

INPUTS:

Table 6-178. PGS_CSC_ECItoECR Inputs
Name Description Units Min Max

numValues number of input time offsets N/A 0 any
asciiUTC UTC start time in CCSDS ASCII

Time Code A or B format
N/A 1972-01-01 see NOTES

offsets array of time offsets seconds Max and Min such that asciiUTC+offset is between
asciiUTC Min and Max values

posvelECI[6] vector (position and velocity) in
J2000 to be transformed to
ECR of date

posvelECI[0].. x position meters
posvelECI[1] y position meters
posvelECI[2].. z position meters
posVelECI[3] x velocity meters/

second

posVelECI[4] y velocity meters/
second

posvelECI[5] z velocity meters/
second

OUTPUTS:

Table 6-179. PGS_CSC_ECItoECR Outputs
Name Description Units Min Max

posvelECR[0] vector after being transformed to ECR of date - x
position

meters

posvelECR[1] vector after being transformed to ECR of date - y
position

meters

posvelECR[2] vector after being transformed to ECR of date - z
position

meters

posvelECR[3] vector after being transformed to ECR of date - x
velocity

meters/second

posvelECR[4] vector after being transformed to ECR of date - y
velocity

meters/second

posvelECR[5] vector after being transformed to ECR of date - z
velocity

meters/second

RETURNS:

Table 6-180. PGS_CSC_ECItoECR Returns (1 of 2)
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_BAD_TRANSFORM_VALUE Invalid ECItoECR transformation
PGSCSC_E_BAD_ARRAY_SIZE Incorrect array size
PGSTD_E_NO_LEAP_SECS No leap seconds correction available input time
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC

 6-408 333-EED-001, Revision 02

Table 6-180. PGS_CSC_ECItoECR Returns (2 of 2)
Return Description

PGSCSC_W_PREDICTED_UT1 Status of UT1–UTC correction is predicted
PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGS_E_TOOLKIT Something unexpected happened, execution of function

ended prematurely

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posvelECI[ARRAY_SIZE][6] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posvelECR[ARRAY_SIZE][6];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_ECItoECR(numValues,asciiUTC,offsets,
 posvelECI,posvelECR)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_ecitoecr
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision posvelECI(6,3)
double precision posvelECR(6,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 6-409 333-EED-001, Revision 02

 asciiutc = '2002-07-27T11:04:57.987654Z'
numvalues = 3

 DO 10 cnt1 = 1,6
 DO 10 cnt2 = 1,3
 posveleci(cnt1,cnt2) = 100 * cnt1 * cnt2

 10 CONTINUE

returnstatus = pgs_csc_ecitoecr(numValues, asciiutc,
 & offsets, posvelECI, posvelECR)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: Users not needing to transform velocity can supply floating point numbers
equal to zero for the last three components of each input vector. The Tool
cannot transform velocity, however, without correct values for the
position. Note that to avoid generating absuredly large velocities for
distant objects, no velocity transformation is performed for points more
than 500,000,000 m from Earth center.

 UTC is: Coordinated Universal Time

 J2000 is Julian Date 2451545.0

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes.

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

 REFERENCES:

 The Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac. “Theoretical Basis of the SDP Toolkit Geolocation Package for
the ECS Project”, Document 445-TP-002-002, May 1995, by P.
Noerdlinger.

REQUIREMENTS: PGSTK–1050

 6-410 333-EED-001, Revision 02

Transform from ECR to ECI Coordinates

NAME: PGS_CSC_ECRtoECI()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ECRtoECI(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posvelECR[][6],
 PGSt_double posvelECI[][6])

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_ecrtoeci(numvalues,asciiutc,offsets,posvelecr,posveleci)
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision posvelecr(6,*)
 double precision posveleci(6,*)

DESCRIPTION: This function rotates an array of 6-vectors from ECR (of date) coordinates
to ECI (J2000) coordinates. The rotation is done in 4 parts: polar motion
(correction from the geographic North to rotational North), rotation about
the true rotation, nutation to the mean of date axis axis, and precession
to J2000).

 6-411 333-EED-001, Revision 02

INPUTS:

Table 6-181. PGS_CSC_ECRtoECI Inputs
Name Description Units Min Max

numValues number of input time
offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII Time
Code A or B format

N/A 1972-01-01 see NOTES

offsets array of time offsets seconds Max and Min such that asciiUTC+offset is between
asciiUTC Min and Max values

posvelECR[6] vector (position and
velocity) in ECR

posvelECR[0].. position meters
posvelECR[2]
posvelECR[3].. velocity meters/

seconds

posvelECR[5]

OUTPUTS:

Table 6-182. PGS_CSC_ECRtoECI Outputs
Name Description Units Min Max

posvelECI[6] vector after being transformed to J2000
posvelECI[0].. position meters
posvelECI[2] meters
posvelECI[3].. velocity meters/second
posvelECI[5] meters/second

RETURNS:

Table 6-183. PGS_CSC_ECRtoECI Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_BAD_TRANSFORM_VALUE Invalid ECItoECR transformation
PGSCSC_E_BAD_ARRAY_SIZE Incorrect array size
PGSTD_E_NO_LEAP_SECS No leap seconds correction available input time
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSCSC_W_PREDICTED_UT1 Status of UT1–UTC correction is predicted
PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGS_E_TOOLKIT Something unexpected happened, execution of function

ended prematurely

 6-412 333-EED-001, Revision 02

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posvelECR[ARRAY_SIZE][6] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posvelECI[ARRAY_SIZE][6];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_ECRtoECI(numValues,asciiUTC,offsets,
 posvelECR,posvelECI)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_ecrtoeci
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision posveleci(6,3)
double precision posvelecr(6,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 asciiutc = '2002-07-27T11:04:57.987654Z'
numvalues = 3

 6-413 333-EED-001, Revision 02

 do 10 cnt1 = 1,6
 do 10 cnt2 = 1,3
 posvelecr(cnt1,cnt2) = 100 * cnt1 * cnt2

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_ecrtoeci (numValues, asciiutc,
 offsets, posvelecr,
 posveleci)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: Users not needing to transform velocity can supply floating point numbers
equal to zero for the last three components of each input vector. The Tool
cannot transform velocity, however, without correct values for the
position. Note that to avoid generating absuredly large velocities for disant
objects, no velocity transformation is performed for points more than
500,000,000 m from Earth center.

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes.

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

 REFERENCES:

 The Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac. “Theoretical Basis of the SDP Toolkit Geolocation Package for
the ECS Project”, Document 445-TP-002-002, May 1995, by P.
Noerdlinger.

REQUIREMENTS: PGSTK–1050

 6-414 333-EED-001, Revision 02

Convert from ECR to Geodetic Coordinates

NAME: PGS_CSC_ECRtoGEO()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ECRtoGEO(
 PGSt_double posECR[3],
 char *earthEllipsTag,
 PGSt_double *longitude,
 PGSt_double *latititude,
 PGSt_double *altitude);

FORTRAN: include 'PGS_SMF.f'
include 'PGS_CSC_4.f'

 integer function
pgs_csc_ecrtogeo(posecr,earthellipstag,longitude,latitude,height)
 double precision posecr(3)
 character*49 earthellipstag
 double precision longitude
 double precision latitude
 double precision altitude

DESCRIPTION: This function converts from ECR to geodetic coordinates.

INPUTS:

Table 6-184. PGS_CSC_ECRtoGEO Inputs
Name Description Units Min Max

posECR[3] geocentric position meters N/A N/A
EarthEllipsTag Earth model used N/A N/A N/A

OUTPUTS:

Table 6-185. PGS_CSC_ECRtoGEO Outputs
Name Description Units Min Max

latitude geodetic latitude radians -pi/2 pi/2
longitude longitude radians -pi pi
altitude altitude meters -.1* Earth sky's the limit

 6-415 333-EED-001, Revision 02

RETURNS:

Table 6-186. PGS_CSC_ECRtoGEO Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_TOO_MANY_ITERS Normal Iteration Count exceeded—could indicate

inconsistent units for Spacecraft and Earth data, or
corrupted Earth Axis values

PGSCSC_W_INVALID_ALTITUDE Spacecraft underground—probably indicates bad input
data

PGSCSC_W_SPHERE_BODY Using a spherical Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater then 0.01
PGSCSC_W_DEFAULT_EARTH_MODEL Uses default Earth model
PGSCSC_E_BAD_EARTH_MODEL The equatorial or polar radius is negative or zero OR

the radii define a prolate Earth
PGS_E_TOOLKIT Something unexpected happened, execution of function

ended prematurely

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double longitude
PGSt_double latitude
PGSt_double altitude
char earthEllipsTag[50],
PGSt_double posECR[3] = {1000.5,64343.56,34343.92}
char err[PGS_SMF_MAX_MNEMONIC_SIZE];
char msg[PGS_SMF_MAX_MSG_SIZE];

 strcpy(earthEllipsTag,"WGS84");

 returnStatus = PGS_CSC_ECRtoGEO(posECR[3],earthEllipsTag,
 longitude,latitude,
 altitude);
if(returnStatus != PGS_S_SUCCESS)
 {
 PGS_SMF_GetMsg(&returnStatus,err,msg);
 printf("\nERROR: %s",msg);
 }

FORTRAN: implicit none

 integer pgs_csc_ecrtogeo
integer returnstatus

 6-416 333-EED-001, Revision 02

double precision longitude
double precision latitude
double precision altitude
character*49 earthellipstag,
double precision posecr(3)
character*33 err
character*241 msg

 data posECR/1000.5,64343.56,34343.92/
earthellipstag = 'WGS84'

 returnstatus = pgs_csc_ecrtogeo(posecr,earthellipstag,
 longitude,latitude,altitude)

 if(returnstatus .ne. pgs_s_success) then
 returnstatus = pgs_smf_getmsg(returnstatus,err,msg)
 write(*,*) err, msg
endif

NOTES: The Earth axes will be accessed from the earthfigure.dat.file. The input
must always be in meters and should never be a unit vector.

REQUIREMENTS: PGSTK–0930, PGSTK–1050

 6-417 333-EED-001, Revision 02

Convert from Geodetic to ECR Coordinates

NAME: PGS_CSC_GEOtoECR()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_GEOtoECR(
 PGSt_double longitude,
 PGSt_double latitude,
 PGSt_double altitude,
 char *earthEllipsTag,
 PGSt_double posECR[3]);

FORTRAN: include 'PGS_SMF.f'
include 'PGS_CSC_4.f'

 integer function
pgs_csc_geotoecr(longitude,latitude,altitude,earthellipstag,posecr)
 double precision longitude
 double precision latitude
 double precision altitude
 character*49 earthellipstag
 double precision posecr(3)

DESCRIPTION: This tool converts a geodetic latitude and longitude to ECR (Earth
Centered Rotating) coordinates.

INPUTS:

Table 6-187. PGS_CSC_GEOtoECR Inputs
Name Description Units Min Max

longitude longitude radians -pi pi
latitude latitude radians -pi/2 pi/2
altitude altitude meters -.1* radius N/A
earthellipstag Earth model used N/A N/A N/A

 6-418 333-EED-001, Revision 02

OUTPUTS:

Table 6-188. PGS_CSC_GEOtoECR Outputs
Name Description Units Min Max

posECR ECR rectangular
coordinates

meters -100,000,000 (usually each component
will be in range [-10,000,000, +10,000,000
m] but function will work for
Geosynchronous cases, e.g.)

100,000,000

RETURNS:

Table 6-189. PGS_CSC_GEOtoECR Returns
Return Description

PGS_S_SUCCESS Success case
PGSCSC_W_DEFAULT_EARTH_MODEL The default Earth model is used because a correct one

was not specified
PGSCSC_W_SPHERICAL_BODY Using a spherical Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater then 0.01
PGSCSC_W_INVALID_ALTITUDE An invalid altitude was specified
PGSCSC_E_BAD_EARTH_MODEL The equatorial or polar radius is negative or zero OR

the radii define a prolate Earth
PGS_E_TOOLKIT Something unexpected happened, execution of function

ended prematurely

EXAMPLES:

C: PGSt_SMF_status returnStatus
PGSt_double longitude
PGSt_double latitude
PGSt_double altitude
char earthEllipsTag[50],
PGSt_double posECR[3]
char err[PGS_SMF_MAX_MNEMONIC_SIZE];
char msg[PGS_SMF_MAX_MSG_SIZE];

 longitude = 0.45;
latitude = 1.34;
altitude = 5000.0;
strcpy(earthEllipsTag,"WGS84");

 6-419 333-EED-001, Revision 02

 returnStatus = PGS_CSC_GEOtoECR(longitude,latitude,altitude,
 earthEllipsTag,posECR);
if(returnStatus != PGS_S_SUCCESS)
 {
 PGS_SMF_GetMsg(&returnStatus,err,msg);
 printf("\nERROR: %s",msg);
 }

FORTRAN: implicit none

 integer pgs_csc_geotoecr
integer returnstatus
double precision longitude
double precision latitude
double precision altitude
character*49 earthellipstag,
double precision posecr(3)
character*33 err
character*241 msg

 longitude = 0.45
latitude = 1.34
altitude = 5000
earthellipstag = 'WGS84'

 returnstatus = pgs_csc_geotoecr(longitude,latitude,altitude,
 earthellipstag,posecr)

 if(returnstatus .ne. pgs_s_success) then
 returnstatus = pgs_smf_getmsg(returnstatus,err,msg)
 write(*,*) err, msg
endif

NOTES: NONE

REQUIREMENTS: PGSTK–0930, PGSTK–1050

 6-420 333-EED-001, Revision 02

Transform from ECI Frame to Spacecraft Reference Frame

NAME: PGS_CSC_ECItoSC()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ECItoSC(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posECI[][3],
 PGSt_double posSC[][3])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_ecitosc(spacecraftTag,numvalues,asciiutc,offsets,poseci,possc)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision poseci(3,*)
 double precision possc(3,*)

DESCRIPTION: Transforms vector in ECI coordinate system to vector in Spacecraft
coordinate system. If a unit vector is input, only its direction is
transformed. If a vector in meters is input, it is first corrected for the
displacement between Earth center and spacecraft location and then
rotated into spacecraft coordinates.

 6-421 333-EED-001, Revision 02

INPUTS:

Table 6-190. PGS_CSC_ECItoSC Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft identifier N/A N/A N/A
numValues number of input time offsets N/A 0 any
asciiUTC UTC start time in CCSDS ASCII Time Code A or

B format
N/A 1961–01–01 see NOTES

offsets array of time offsets seconds Max and Min such that
asciiUTC+offset is between
asciiUTC Min and Max values

posECI coordinates
or unit vector components in ECI reference
frame

meter N/A N/A

OUTPUTS:

Table 6-191. PGS_CSC_ECItoSC Outputs
Name Description Units Min Max

posSC coordinates or unit vector components in spacecraft reference
frame

meters N/A N/A

RETURNS:

Table 6-192. PGS_CSC_ECItoSC Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE vector magnitude indicates subsurface location specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times
PGSEPH_E_NO_DATA_REQUESTED Both orb and att flags are set to false

 6-422 333-EED-001, Revision 02

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posECI[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posSC[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_ECItoSC(PGSd_TRMM,numValues,asciiUTC,
 offsets,posECI,posSC)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_ecitosc
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision poseci(3,3)
double precision possc(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 do 10 cnt1 = 1,3
 do 10 cnt2 = 1,3
 posveleci(cnt1,cnt2) = 100 * cnt1 * cnt2

 6-423 333-EED-001, Revision 02

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_ecitosc(PGSd_TRMM, numValues,
asciiutc,
 offsets, poseci, possc)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: Points are checked to make sure they are not subterranean, but no other
visibility check is performed (such as line–of–sight).

 Next the function checks the input vector to see if it is a unit vector. If so,
it is assumed that the user wishes only to transform its direction. If not, it
is assumed that the vector locates some point of interest (for example, a
TDRSS satellite, or a lookpoint). Thus, for that case a translation to the
spacecraft center is performed first and then a rotation. Aberration
correction is also performed in both cases, except in the second case, for
points within 120 m of spacecraft center. Vectors to such points are not
aberrated. This cutoff is imposed on the supposition that anyone wishing
to transform a point within 120 m of the spacecraft center could be dealing
with an alignment, glint, or other spacecraft-related problem, in which case
there is no aberration. For the purposes of this function, a vector is a unit
vector if its magnitude is between 0.99999 and 1.00001.

 TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Conversion System Coordinate Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-424 333-EED-001, Revision 02

Transform Between Spacecraft and ECI Reference Frames

NAME: PGS_CSC_SCtoECI()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_SCtoECI(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posSC[][3],
 PGSt_double posECI[][3])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_sctoeci(spacecraftTag,numvalues,asciiutc,offsets,possc,poseci)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision possc(3,*)
 double precision poseci(3,*)

DESCRIPTION: Transforms vector in Spacecraft coordinate system to vector in ECI
coordinate system. If a unit vector is input, it is simply rotated to ECI
coordinates. If a vector in meters in input, it is rotated to ECI axes and
then translated from having its origin at the spacecraft center to having its
origin at Earth center.

 6-425 333-EED-001, Revision 02

INPUTS:

Table 6-193. PGS_CSC_SCtoECI Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft
identifier

N/A N/A N/A

numValues number of input
time offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII
Time Code A or B
format

N/A 1961–01–01 see NOTES

offsets array of time
offsets

seconds Max and Min such that asciiUTC+offset is
between asciiUTC Min and Max values

posSC coordinates
or unit vector
components in SC
reference frame

meters N/A N/A

OUTPUTS:

Table 6-194. PGS_CSC_SCtoECI Outputs
Name Description Units Min Max

posECI coordinates or unit vector components in ECI reference
frame

meters N/A N/A

RETURNS:

Table 6-195. PGS_CSC_SCtoECI Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input
PGSEPH_E_NO_DATA_REQUESTED Both orb and att flags are set to false

 6-426 333-EED-001, Revision 02

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posSC[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posECI[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_SCtoECI(PGSd_TRMM,numValues,
 asciiUTC,offsets, posSC,
 posECI)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_sctoeci
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision possc(3,3)
double precision poseci(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 6-427 333-EED-001, Revision 02

 do 10 cnt1 = 1,3
 do 10 cnt2 = 1,3
 posveleci(cnt1,cnt2) = 100 * cnt1 * cnt2

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_sctoeci (PGSd_TRMM,numValues,
 asciiutc,offsets,possc,
 poseci)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: This function first checks the input vector to see if it is a unit vector. If so,
it is assumed that the user wishes only to transform its direction. If not, it
is assumed that the vector locates some point of interest (for example, a
TDRSS satellite, or a lookpoint). For that case a rotation to ECI axes is
performed first, and then a translation to the Earth center. An aberration
correction is also made if the input is a unit vector or is in meters and
represents a point more than 120 m from spacecraft center. This cutoff is
imposed on the supposition that anyone wishing to transform a point
within 120 m of the spacecraft center could be dealing with an alignment,
glint, or other spacecraft-related problem, in which case there is no
aberration. For the purposes of this function, a vector is a unit vector if its
magnitude is between 0.99999 and 1.00001

Certain checks are performed in the case of translation to ensure that the
transformed point is not below the Earth's surface; other visibility checks
(such as line–of–sight) are not performed.

 TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-428 333-EED-001, Revision 02

Transform from Spacecraft Frame to Orbital Frame

NAME: PGS_CSC_SCtoORB()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_SCtoORB(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posSC][3],
 PGSt_double posORB[][3])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_sctoorb(spacecraftTag,numvalues,asciiutc,offsets,possc,posorb)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision possc(3,*)
 double precision posorb(3,*)

DESCRIPTION: Transforms vector in Spacecraft reference frame to a vector in Orbital
reference frame.

 6-429 333-EED-001, Revision 02

INPUTS:

Table 6-196. PGS_CSC_SCtoORB Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft
identifier

N/A N/A N/A

numValues number of input
time offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII
Time Code A or B
format

N/A 1961–01–01 see NOTES

offsets array of time
offsets

seconds Max and Min such that asciiUTC+offset is
between asciiUTC Min and Max values

posSC coordinates
or unit vector
components in SC
reference frame

meters N/A N/A

OUTPUTS:

Table 6-197. PGS_CSC_SCtoORB Outputs
Name Description Units Min Max

posORB coordinates or unit vector components in Orbital
reference frame

meters N/A N/A

RETURNS:

Table 6-198. PGS_CSC_SCtoORB Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location

specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times

 6-430 333-EED-001, Revision 02

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posSC[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posORB[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_SCtoORB(pgsd_trmm,numvalues,asciiutc,
 offsets,possc,posORB)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_sctoorb
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision possc(3,3)
double precision posorb(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 do 10 cbt1 = 1,3
 do 10 cnt2 = 1,3
 possc(cnt1,cnt2) = 100 * cnt1 * cnt2

 6-431 333-EED-001, Revision 02

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_sctoorb(pgsd_trmm,numvalues,
asciiutc,
 offsets, possc, posorb)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-432 333-EED-001, Revision 02

Transform from Orbital Frame to Spacecraft Frame

NAME: PGS_CSC_ORBtoSC()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ORBtoSC(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posORB][3],
 PGSt_double posSC[][3])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_orbtosc(spacecrafttag,numvalues,asciiutc,offsets,posorb,possc)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision posorb(3,*)
 double precision possc(3,*)

DESCRIPTION: Transforms vector from Orbital reference frame to a vector in Spacecraft
reference frame.

 6-433 333-EED-001, Revision 02

INPUTS:

Table 6-199. PGS_CSC_ORBtoSC Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft
identifier

N/A N/A N/A

numValues number of input
time offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII
Time Code A or B
format

N/A 1960–01–01 see NOTES

offsets array of time
offsets

seconds Max and Min such that asciiUTC+offset is
between asciiUTC Min and Max values

posORB coordinates
or unit vector
components in
Orbital reference
frame

meters N/A N/A

OUTPUTS:

Table 6-200. PGS_CSC_ORBtoSC Outputs
Name Description Units Min Max

posSC coordinates or unit vector components in spacecraft
reference frame

meters N/A N/A

RETURNS:

Table 6-201. PGS_CSC_ORBtoSC Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location

specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times

 6-434 333-EED-001, Revision 02

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posORB[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posSC[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_ORBtoSC(PGSd_TRMM,numValues,asciiUTC,
 offsets, posORB, posSC)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_orbtosc
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision posorb(3,3)
double precision possc(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 do 10 cnt1 = 1,3
 do 10 cnt2 = 1,3
 posorb(cnt1,cnt2) = 100 * cnt1 * cnt2

 6-435 333-EED-001, Revision 02

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_orbtosc(pgsd_trmm,numvalues,
asciiutc,
 offsets, posorb, possc)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 UTC is: Coordinted Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-436 333-EED-001, Revision 02

Transform from ECI Frame to Orbital Frame

NAME: PGS_CSC_ECItoORB()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ECItoORB(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double positionECI[][3],
 PGSt_double positionORB[][3])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_EHP_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_ecitoorb(spacecraftTag,numvalues,asciiutc,offsets,positioneci,
 positionorb)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision positioneci(3,*)
 double precision positionorb(3,*)

DESCRIPTION: Transforms vector in ECI coordinate system to vector in Orbital
coordinate system. If a unit vector is input only its direction is changed. If
a vector in meters is input, it is first translated from the Earth centered
system to a spacecraft centered origin, and then rotated to orbital
coordinate axes.

 6-437 333-EED-001, Revision 02

INPUTS:

Table 6-202. PGS_CSC_ECItoORB Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft
identifier

N/A N/A N/A

numValues number of input
time offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII
Time Code A or B
format

N/A 1961–01–01 see NOTES

offsets array of time
offsets

seconds Max and Min such that asciiUTC+offset is
between asciiUTC Min and Max values

positionECI coordinates
or unit vector
components in ECI
reference frame

meters N/A N/A

OUTPUTS:

Table 6-203. PGS_CSC_ECItoORB Outputs
Name Description Units Min Max

positionORB coordinates or unit vector components in orbital reference
frame

meters N/A N/A

RETURNS:

Table 6-204. PGS_CSC_ECItoORB Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location

specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times

 6-438 333-EED-001, Revision 02

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double positionORB[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double positionORB[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus =
PGS_CSC_ECItoORB(PGSd_TRMM,numValues,asciiUTC,
 offsets, positionECI,
 positionORB)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_ecitoorb
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision positioneci(3,3)
double precision positionorb(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 6-439 333-EED-001, Revision 02

 do 10 cnt1 = 1,3
 do 10 cnt2 = 1,3
 positioneci(cnt1,cnt2) = 100 * cnt1 * cnt2

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_ecitoorb(pgsd_trmm,numvalues,
 asciiutc,offsets,
 positioneci, positionorb)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-440 333-EED-001, Revision 02

Transform from Orbital Frame to ECI Frame

NAME: PGS_CSC_ORBtoECI()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ORBtoECI(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double positionORB[][3],
 PGSt_double positionECI[][3])

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_SMF.f'

 integer function pgs_csc_orbtoeci(spacecraftTag,numvalues,asciiutc,
 offsets,positionorb,positioneci)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision positionorb(3,*)
 double precision positioneci(3,*)

DESCRIPTION: Transforms vector in Orbital coordinate system to vector in ECI
coordinate system. If a unit vector is input it is simply rotated from Orbital
to ECI axes. If a vector in meters is input, it is first rotated from Orbital to
ECI axes and then translated from the system referenced at spacecraft
center to the system referenced at Earth center.

 6-441 333-EED-001, Revision 02

INPUTS:

Table 6-205. PGS_CSC_ORBtoECI Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft
identifier

N/A N/A N/A

numValues number of input
time offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII
Time Code A or B
format

N/A 1961–01–01 see NOTES

offsets array of time
offsets

seconds Max and Min such that asciiUTC+offset is
between asciiUTC Min and Max values

positionORB coordinates
or unit vector
components in
Orbital reference
frame

meters N/A N/A

OUTPUTS:

Table 6-206. PGS_CSC_ORBtoECI Outputs
Name Description Units Min Max

positionECI coordinates or unit vector components in ECI reference
frame

meters N/A N/A

RETURNS:

Table 6-207. PGS_CSC_ORBtoECI Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location

specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times

 6-442 333-EED-001, Revision 02

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double positionORB[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double positionECI[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus =
PGS_CSC_ORBtoECI(PGSd_TRMM,numValues,asciiUTC,offsets,
 positionORB,positionECI)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_orbtoeci
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision positionorb(3,3)
double precision positioneci(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 6-443 333-EED-001, Revision 02

 do 10 cnt1 = 1,3
 do 10 cnt2 = 1,3
 positionorb(cnt1,cnt2) = 100 * cnt1 * cnt2

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_orbtoeci(pgsd_trmm,numvalues,
 asciiutc,offsets,
 positionorb,positioneci)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-444 333-EED-001, Revision 02

6.3.4.10 Coordinate System Conversion—Other Tools

These tools provide other location and orientation information to the user.

Get Sub–Satellite Point Position and Velocity

NAME: PGS_CSC_SubSatPoint()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_SubSatPoint(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 char earthEllipsTag[50],
 PGSt_boolean velFlag,
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_double altitude[],
 PGSt_double velSub[][3])

FORTRAN: include 'PGS_SMF.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_MEM_7.f'

 integer function
pgs_csc_subsatpoint(spacecrafttag,numvalues,asciiutc,offsets,

 earthellipstag,velflag,latitude,longitude,
 altitude,velsub)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 character*49 earthellipstag
 integer velflag
 double precision latitude(*)

 6-445 333-EED-001, Revision 02

 double precision longitude(*)
 double precision altitude(*)
 integer velsub(3,*)

DESCRIPTION: This tool finds the latitude, longitude, and altitude of the subsatellite
points at the input times/offsets and, optionally, returns North and East
components of each subsatellite point. The third component returned for
each subsatellite point, when velocity is requested, is the rate of change of
the spacecraft altitude off the Earth ellipsoid (as would be measured by a
Doppler radar altimiter, ignoring terrain).

INPUTS:

Table 6-208. PGS_CSC_SubSatPoint Inputs
Name Description Units Min Max

spacecraftTag spacecraft identifier N/A N/A N/A
numValues number of input offset times N/A 0 any
asciiUTC timesstart UTC time in

CCSDS ASCII Time Code (A
or B format)

N/A 1979–06–30 see NOTES

offsets array of time offsets seconds Max and Min such that asciiUTC +
offset is between Min and Max values

earthEllipsTag tag selecting Earth ellipsoid
model (default is WGS84)

N/A N/A N/A

velFlag flag indicating whether to
return the velocity of the
subsatellite points

N/A PGS_FALSE

PGS_TRUE

OUTPUTS:

Table 6-209. PGS_CSC_SubSatPoint Outputs
Name Description Units Min Max

latitude array of subsatellite point geodetic latitudes radians -pi/2 pi/2
longitude array of subsatellite point longitudes radians -pi pi
altitude array of spacecraft altitudes m 250000 10000000
velSub[0] North component of the subsatellite point

velocity on the ellipsoid
m/s -7000 7000

velSub[1] East component of the subsatellite point
velocity on the ellipsoid

m/s -7000 7000

velSub[2] rate of change of spacecraft altitude relative
to nadir on the ellipsoid

m/s -200 200

 6-446 333-EED-001, Revision 02

RETURNS:

Table 6-210. PGS_CSC_SubSatPoint Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_ERROR_IN_SUBSATPT An error occurred in computing at least one subsatellite

point
PGSCSC_W_PREDICTED_UT1 At least one of the values obtained from the utcpole.dat

file is 'predicted'
PGSCSC_W_PROLATE_BODY Using a prolate Earth model
PGSCSC_W_SPHERE_BODY Using a spherical Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater than 0.01
PGSCSC_W_DEFAULT_EARTH_MODEL Default Earth model was used
PGSCSC_W_ZERO_JACOBIAN_DET Jacobian determinant is close to zero
PGSCSC_E_BAD_ARRAY_SIZE numValues (and array size) is less than zero
PGSMEM_E_NO_MEMORY No memory available to allocate vectors
PGSTD_E_SC_TAG_UNKNOWN Invalid spacecraft tag
PGSEPH_E_BAD_EPHEM_FILE_HEADER No spacecraft ephemeris files had reasonable headers
PGSEPH_E_NO_SC_EPHEM_FILE No spacecraft ephemeris files could be found for input
PGSTD_E_TIME_FMT_ERROR Format error in input asciiUTC
PGSTD_E_TIME_VALUE_ERROR Error in one of time values in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for at least one of

the input times/offsets—a linear approximation was
used to obtain the leapsec value

PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGSTD_E_BAD_EARTH_MODEL The equatorial or polar radius is negative or zero OR

the radii define a prolate Earth
PGS_E_TOOLKIT Something unexpected happened—execution aborted

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_tag spacecraftTag = PGSd_EOS_AM;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
char earthEllipsTag[50];
PGSt_boolean velFlag = PGS_TRUE;
PGSt_double latitude[ARRAY_SIZE];

 6-447 333-EED-001, Revision 02

PGSt_double longitude[ARRAY_SIZE];
PGSt_double altitude[ARRAY_SIZE];
PGSt_double velSub[ARRAY_SIZE][3];
PGSt_integer counter;

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30");
strcpy(earthEllipsTag,"WGS84");

 returnStatus = PGS_CSC_SubSatPoint(spacecraftTag,numValues,
 asciiUTC,offsets,
 earthEllipseTag,velFlag,
 latitude,longitude,
 altitude,velSub);

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}
printf("start time:%s",asciiUTC);
counter = 0;
while(counter <= numValues)
{
 printf("Offset: %lf Latitude: %lf Longitude: %lf
 Altitude: %lf", offset[counter],
 latitude[counter], longitude[counter],
 altitude[counter]);
 printf("Velocity of subsatellite point
 (North,East,altitude): %lf, %lf, %lf" " m/s",
 velSub[counter][0], velSub[counter][1],
 velSub[counter][2]);

 counter++;
}

FORTRAN: implicit none

 integer pgs_csc_subsatpoint
integer array_size
integer spacecrafttag
integer numvalues
character*27 asciiutc
double precision offsets(array_size)
character*49 earthellipstag
integer velflag

 6-448 333-EED-001, Revision 02

double precision latitude(array_size)
double precision longitude(array_size)
double precision altitude(array_size)
double precision velsub(3,array_size)
integer returnstatus
integer counter

 data offsets/3600.0,7200.0,10800.0/
data earthellipstag/'WGS84'/,velflag/PGS_TRUE/
array_size = 3
numvalues = array_size
spacecrafttag = pgsd_eos_am
asciiutc = '1991-01-01T11:29:30'

 returnstatus = pgs_csc_subsatpoint(spacecrafttag,numvalues,
 asciiutc,offsets,
 earthellipsetag,velflag,
 latitude,longitude,
 altitude,velsub)

 if(returnstatus .ne. pgs_s_success) go to 90
write(6,*) asciiutc
do 40 counter = 0,numvalues,1
 write(6,*)offsets(counter), latitude(counter),
 longitude(counter), altitude(counter),
 velsub(1,counter), velsub(2,counter),
 velsub(3,counter)

 40 continue

 90 write(6,99)returnstatus

 99 format('ERROR:',I50)

NOTES: If an error occurs during computation for one or more input times but does
not necessarily affect all input times, latitude, longitude, altitude, and
velocity values of PGSd_GEO_ERROR_VALUE are returned for the
input times where the error occurred. An indication that an error occurred
in this tool is returned in the returnStatus value, and a description of the
error is returned in the corresponding message.

 If an invalid earthEllipsTag is input, the program will use the WGS84
Earth model by default.

 The option to obtain velocity is controlled by setting the velocity flag
velFlag to either PGS_TRUE or PGS_FALSE. If velFlag is PGS_FALSE,
all components of velSub will be set to zero. If the velocity is not needed it
is recommended to use PGS_FALSE to speed the execution of the code.

 6-449 333-EED-001, Revision 02

 The horizontal velocity calculated in function
PGS_CSC_SubSatPointVel() is that of a mathematical point on the Earth
at (nominal) spacecraft nadir, and not that of any material object. It is
orthogonal to nadir, so is suitable as a descriptor of ground track but not
for Doppler work.

 The third (vertical) component of velocity is useful for Doppler work at
nadir, but Doppler velocity along ANY look vector (not just nadir) is
provided in the lookpoint algorithm in the function
PGS_CSC_GetFOV_Pixel().

 The condition PGSCSC_W_ZERO_JACOBIAN_DET is not expected to
occur. Its appearance would indicate that the geometry is singular: the
altitude of the spacecraft is zero or the spacecraft is exactly at the north or
south pole, for example.

 TIME ACRONYMS:

 UT1 is: Universal Time
UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

 REFERENCES FOR TIME:

 CCSDS 301.0–B–2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac.

REQUIREMENTS: PGSTK–0930, PGSTK–1060

 6-450 333-EED-001, Revision 02

Get Times of Earth Point in Fixed Field of View

NAME: PGS_CSC_Earthpt_FixedFOV()

SYNOPSIS:

C: #include <PGS_TD.h>
#include <PGS_CSC.h>
#include <PGS_EPH.h>
#include <PGS_MEM.h>

 PGSt_SMF_status
PGS_CSC_Earthpt_FixedFOV(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_tag spacecraftTag,
 char *earthEllipsTag,
 PGSt_double latitude,
 PGSt_double longitude,
 PGSt_double altitude,
 PGSt_integer numFOVperimVec,
 PGSt_double inFOVvector[3],
 PGSt_double perimFOV_vectors[][3],
 PGSt_boolean inFOVflag[],
 PGSt_double sctoEarthptVec[][3])

FORTRAN: include 'PGS_TD_3.f'
include 'PGS_CSC_4.f'
include 'PGS_EPH_5.f'
include 'PGS_MEM_7.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function pgs_csc_earthpt_fixedfov(numvalues,asciiutc,offsets,
 spacecrafttag,earthellipstag,latitude,
 longitude,altitude,numfovperimvec,
 infovvector,perimfov_vectors,
 infovflag,sctoearthptvec)

 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer spacecrafttag
 character*49 earthellipstag

 6-451 333-EED-001, Revision 02

 double precision latitude
 double precision longitude
 double precision altitude
 integer numfovperimvec
 double precision infovvector(3)
 double precision perimfov_vectors(3,*)
 integer infovflag(*)
 double precision sctoearthptvec(3,*)

DESCRIPTION: For each time value, the tool, using the FOV description, returns a flag or
flags indicating if the Earth point of given latitude, longitude and altitude
is in the FOV, and the vector to that point from the SC in SC coordinates.

INPUTS:

Table 6-211. PGS_CSC_Earthpt_FixedFOV Inputs
Name Description Units Min Max

numValues number of time gridpoints N/A 0 any
asciiUTC UTC start time N/A 1972-01-01 see NOTES
offsets array of time offsets seconds Max and Min such that asciiUTC+offset

is between asciiUTC Min and Max
values

spacecraftTag unique spacecraft identifier N/A N/A N/A
earthEllipsTag Earth model used N/A N/A N/A
latitude latitude of Earth point radians -pi/2 +pi/2
longitude longitude of Earth point radians -2*pi +2*pi
altitude altitude of Earth point meters -50000 100000
numFOVperimVec number of vectors defining

FOV perimeter
N/A 3 any

inFOVvector vector in FOV—preferably
near the center in SC
coordinates

N/A N/A N/A

perimFOV_vectors vectors in SC coords
defining FOV's; MUST be
sequential around FOV; the
middle dimension must be
exactly the same as
numFOVperimVec
because of the way the
array dimensioning works
in the function

N/A N/A N/A

 6-452 333-EED-001, Revision 02

OUTPUTS:

Table 6-212. PGS_CSC_Earthpt_FixedFOV Outputs
Name Description Units Min Max

inFOVflag PGS_TRUE if Earth point is in FOV—see notes n/a n/a n/a
sctoEarthptVec vector to Earth point in SC coords—returned normalized meters -1 1

RETURNS:

Table 6-213. PGS_CSC_Earthpt_FixedFOV Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE Location is below surface
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_BAD_INITIAL_TIME Initial time is incorrect
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSCSC_W_DEFAULT_EARTH_MODEL The default Earth model is used because a correct one

was not specified
PGSCSC_W_DATA_FILE_MISSING The data file earthfigure.dat is missing
PGSCSC_W_SPHERICAL_BODY Using a spherical Earth model
PGSCSC_W_PROLATE_BODY Using a prolate Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater then 0.01
PGSCSC_E_INVALID_ALTITUDE An invalid altitude was specified
PGSCSC_E_NEG_OR_ZERO_RAD The equatorial or polar radius is negative or zero
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSCSC_E_BAD_ARRAY_SIZE Incorrect array size
PGSCSC_W_PREDICTED_UT1 Status of UT1–UTC correction is predicted
PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times
PGSCSC_E_INVALID_FOV_DATA FOV perimeter vectors are invalid
PGSCSC_E_FOV_TOO_LARGE FOV specification outside algorithmic limits
PGSCSC_E_INVALID_EARTH_PT One of the Earth point vectors was zero
PGSCSC_W_ZERO_PIXEL_VECTOR Instrument pixel vector of zero length
PGSCSC_W_BAD_EPH_FOR_PIXEL Ephemeris Data missing for some pixels

EXAMPLES:

C: #define ARRAY_SIZE 3
#define PERIMVEC_SIZE 4

 6-453 333-EED-001, Revision 02

PGSt_SMF_status returnStatus;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_integer numValues;
PGSt_double latitude;
PGSt_double longitude;
PGSt_double altitude;
PGSt_integer numFOVperimVec;
PGSt_double inFOVvector[3] =
 { {0.0,0.0,100.0},
 };
PGSt_double perimFOV_vectors[PERIMVEC_SIZE][3]=
 { {100.0,100.0,100.0},
 {-100.0,100.0,100.0},
 {-100.0,-100.0,100.0},
 {100.0,-100.0,100.0} };
PGSt_boolean inFOVflag[ARRAY_SIZE];
PGSt_double sctoEarthptVec[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
numFOVperimVec = PERIMVEC_SIZE;
strcpy(asciiUTC,"1995-06-21T11:29:30.123211Z");
altitude = 10000.0;
latitude = 0.32;
longitude = 2.333;
returnStatus =
PGS_CSC_Earthpt_FixedFOV(numValues,asciiUTC,offsets,
 PGSd_TRMM,"WGS84",latitude,
 longitude,altitude,numFOVperimVec,
 inFOVvector,perimFOV_vectors,inFOVflag,
 sctoEarthptVec)
if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

 6-454 333-EED-001, Revision 02

FORTRAN: implicit none

 integer pgs_csc_earthpt_fixedfov
integer returnstatus
integer numvalues
character*27 startutc
double precision offsets(3)
double precision latitude
double precision longitude
double precision altitude
integer numfovperimvec
double precision infovvector(3)
double precision perimfov_vectors(3,4)
integer infovflag(3)
double precision sctoearthptvec(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 perimfov_vectors(1,1) = 100.0
perimfov_vectors(2,1) = 100.0
perimfov_vectors(3,1) = 100.0

 perimfov_vectors(1,2) = -100.0
perimfov_vectors(2,2) = 100.0
perimfov_vectors(3,2) = 100.0

 perimfov_vectors(1,3) = -100.0
perimfov_vectors(2,3) = -100.0
perimfov_vectors(3,3) = 100.0

 perimfov_vectors(1,4) = 100.0
perimfov_vectors(2,4) = -100.0
perimfov_vectors(3,4) = 100.0

 infovvector(1) = 0.0
infovvector(2) = 0.0
infovvector(3) = 100.0

 asciiutc = '1995-06-21T11:04:57.987654Z'
numvalues = 3
numfovperimvec = 4
altitude = 10000.0
latitude = 0.32
longitude = 2.333

 6-455 333-EED-001, Revision 02

 returnstatus =
pgs_csc_earthpt_fixedfov(numvalues,startutc,offsets,
 PGSd_TRMM,'WGS84',latitude,
 longitude,altitude,numfovperimvec,
 infovvector,perimfov_vectors,
 infovflag,sctoearthptvec)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: At each time, the tool determines if the Earth point at (latitude, longitude,
altitude) is in the FOV, setting inFOVflag = PGS_TRUE if so, else
PGS_FALSE. The vector from SC to Earth point is also returned, whether
or not the Earth point is in the FOV, and even if it is on the far side of the
Earth. Test for the spacecraft to Earth point being equal to 1.0e50 to avoid
processing Earth points that could not be determined because of one or
more errors in the transformation.

 The FOV is always specified and fixed in SC coordinates.
numFOVperimVec should be at least 3. The tool determines if the Earth
point lies within the perimeter defined by the vectors perim–
FOVvectors[][3]. The first index in C (last in FORTRAN) runs around the
perimeter and must be sequential. If the altitude is unknown use zero.

 The vector inFOVvector[3] must be defined in SC coordinates and must
lie within the FOV. It is necessary for the user to supply a vector within
the FOV because on the surface of a sphere, a closed curve or "perimeter"
does not have an inside nor outside, except by arbitrary definition; i.e., this
vector tells the algorithm which part of sky is inside the FOV, which
outside. If the vector is well centered in the FOV, the algorithm will be
faster.

 The vectors "perimFOV_vectors[][3]" defining the FOV perimeter can be
in clock or counter–clockwise sequence. If the FOV perimeter vectors are
supplied out of order, the algorithm will run but the results are
unpredictable. The input vectors need not be normalized but must not be
zero.

 See Section 6.3.4.8 Conversion System Coordinate Tool Notes

 See Section 6.2.7.5.1 (UT1-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1090

 6-456 333-EED-001, Revision 02

Get Times of Earth Point in Field of View

NAME: PGS_CSC_Earthpt_FOV()

SYNOPSIS:

C: #include <PGS_TD.h>
#include <PGS_CSC.h>
#include <PGS_EPH.h>
#include <PGS_MEM.h>

 PGSt_SMF_status
PGS_CSC_Earthpt_FOV(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_tag spacecraftTag,
 char *earthEllipsTag,
 PGSt_double latitude,
 PGSt_double longitude,
 PGSt_double altitude,
 PGSt_integer numFOVperimVec,
 PGSt_double inFOVvector[][3],
 void *perimFOV_vectors,
 PGSt_boolean inFOVflag[],
 PGSt_double sctoEarthptVec[][3])

FORTRAN: include 'PGS_TD_3.f'
include 'PGS_CSC_4.f'
include 'PGS_EPH_5.f'
include 'PGS_MEM_7.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function pgs_csc_earthpt_fov(numvalues,asciiutc,offsets,
 spacecrafttag,earthellipstag,latitude,
 longitude,altitude,numfovperimvec,
 infovvector,perimfov_vectors,
 infovflag,sctoearthptvec)

 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer spacecrafttag
 character*49 earthellipstag

 6-457 333-EED-001, Revision 02

 double precision latitude
 double precision longitude
 double precision altitude
 integer numfovperimvec
 double precision infovvector(3,*)
 double precision perimfov_vectors(3,*,*)
 integer infovflag(*)
 double precision sctoearthptvec(3,*)

DESCRIPTION: For each time value, the tool, using the FOV description, returns a flag or
flags indicating if the Earth point of given latitude, longitude and altitude
is in the FOV, and a unit vector to that point from the SC in SC
coordinates.

INPUTS:

Table 6-214. PGS_CSC_Earthpt_FOV Inputs
Name Description Units Min Max

numValues number of time gridpoints N/A 0 any
asciiUTC UTC start time N/A 1972-01-01 see NOTES
offsets array of time offsets seconds Max and Min such that asciiUTC+offset

is between asciiUTC Min and Max
values

spacecraftTag unique spacecraft identifier N/A N/A N/A
earthEllipsTag Earth model used N/A N/A N/A
latitude latitude of Earth point radians -pi/2 +pi/2
longitude longitude of Earth point radians -2*pi +2*pi
altitude altitude of Earth point meters -50000 100000
numFOVperimVec number of vectors defining

FOV perimeter
N/A 3 any

inFOVvector vector in FOV—preferably
near the center in SC
coordinates

N/A N/A N/A

perimFOV_vectors vectors in SC coords
defining FOV's; MUST be
sequential around FOV; the
middle dimension must be
exactly the same as
numFOVperimVec
because of the way the
array dimensioning works
in the function

N/A N/A N/A

 6-458 333-EED-001, Revision 02

OUTPUTS:

Table 6-215. PGS_CSC_Earthpt_FOV Outputs
Name Description Units Min Max

inFOVflag PGS_TRUE if Earth point is in FOV—see notes n/a n/a n/a
sctoEarthptVec vector to Earth point in SC coords—returned normalized meters -1 1

RETURNS:

Table 6-216. PGS_CSC_Earthpt_FOV Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE Location is below surface
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_BAD_INITIAL_TIME Initial time is incorrect
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSCSC_W_DEFAULT_EARTH_MODEL The default Earth model is used because a correct one

was not specified
PGSCSC_W_DATA_FILE_MISSING The data file earthfigure.dat is missing
PGSCSC_W_SPHERICAL_BODY Using a spherical Earth model
PGSCSC_W_PROLATE_BODY Using a prolate Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater then 0.01
PGSCSC_E_INVALID_ALTITUDE An invalid altitude was specified
PGSCSC_E_NEG_OR_ZERO_RAD The equatorial or polar radius is negative or zero
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSCSC_E_BAD_ARRAY_SIZE Incorrect array size
PGSCSC_W_PREDICTED_UT1 Status of UT1–UTC correction is predicted
PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times
PGSCSC_E_INVALID_FOV_DATA FOV perimeter vectors are invalid
PGSCSC_E_FOV_TOO_LARGE FOV specification outside algorithmic limits
PGSCSC_E_INVALID_EARTH_PT One of the Earth point vectors was zero
PGSCSC_W_ZERO_PIXEL_VECTOR Instrument pixel vector of zero length
PGSCSC_W_BAD_EPH_FOR_PIXEL Ephemeris Data missing for some pixels

EXAMPLES:

C: #define ARRAY_SIZE 3
#define PERIMVEC_SIZE 4
PGSt_SMF_status returnStatus;
char asciiUTC[28];

 6-459 333-EED-001, Revision 02

PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_integer numValues;
PGSt_double latitude;
PGSt_double longitude;
PGSt_double altitude;
PGSt_integer numFOVperimVec;
PGSt_double inFOVvector[ARRAY_SIZE][3] =
 { {0.0,0.0,100.0},
 {0.0,0.0,200.0},
 {0.0,0.0,300.0}
 };
PGSt_double
 perimFOV_vectors[ARRAY_SIZE][PERIMVEC_SIZE][3]=
 { {100.0,100.0,100.0},
 {-100.0,100.0,100.0},
 {-100.0,-100.0,100.0},
 {100.0,-100.0,100.0},
 {200.0,200.0,200.0},
 {-200.0,200.0,200.0},
 {-200.0,-200.0,200.0},
 {200.0,-200.0,200.0},
 {300.0,200.0,200.0},
 {-200.0,300.0,200.0},
 {-200.0,-300.0,300.0},
 {300.0,-200.0,200.0},
 };
PGSt_boolean inFOVflag[ARRAY_SIZE];
PGSt_double sctoEarthptVec[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
numFOVperimVec = PERIMVEC_SIZE;
strcpy(asciiUTC,"1995-06-21T11:29:30.123211Z");
altitude = 10000.0;
latitude = 0.32;
longitude = 2.333;
returnStatus =
PGS_CSC_Earthpt_FOV(numValues,asciiUTC,offsets,
 PGSd_TRMM,"WGS84",latitude,
 longitude,altitude,numFOVperimVec,
 inFOVvector,perimFOV_vectors,inFOVflag,
 sctoEarthptVec)
if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,

 6-460 333-EED-001, Revision 02

 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_earthpt_fov
integer returnstatus
integer numvalues
character*27 startutc
double precision offsets(3)
double precision latitude
double precision longitude
double precision altitude
integer numfovperimvec
double precision infovvector(3,4)
double precision perimfov_vectors(3,4,3)
integer infovflag(3)
double precision sctoearthptvec(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 perimfov_vectors(1,1,1) = 100.0
perimfov_vectors(2,1,1) = 100.0
perimfov_vectors(3,1,1) = 100.0

 perimfov_vectors(1,2,1) = -100.0
perimfov_vectors(2,2,1) = 100.0
perimfov_vectors(3,2,1) = 100.0

 perimfov_vectors(1,3,1) = -100.0
perimfov_vectors(2,3,1) = -100.0
perimfov_vectors(3,3,1) = 100.0

 perimfov_vectors(1,4,1) = 100.0
perimfov_vectors(2,4,1) = -100.0
perimfov_vectors(3,4,1) = 100.0

 perimfov_vectors(1,1,2) = 200.0
perimfov_vectors(2,1,2) = 200.0
perimfov_vectors(3,1,2) = 200.0

 perimfov_vectors(1,2,2) = -200.0
perimfov_vectors(2,2,2) = 200.0
perimfov_vectors(3,2,2) = 200.0

 6-461 333-EED-001, Revision 02

 perimfov_vectors(1,3,2) = -200.0
perimfov_vectors(2,3,2) = -200.0
perimfov_vectors(3,3,2) = 200.0

 perimfov_vectors(1,4,2) = 200.0
perimfov_vectors(2,4,2) = -200.0
perimfov_vectors(3,4,2) = 200.0

 perimfov_vectors(1,1,3) = 300.0
perimfov_vectors(2,1,3) = 300.0
perimfov_vectors(3,1,3) = 300.0

 perimfov_vectors(1,2,3) = -300.0
perimfov_vectors(2,2,3) = 300.0
perimfov_vectors(3,2,3) = 300.0

 perimfov_vectors(1,3,3) = -300.0
perimfov_vectors(2,3,3) = -300.0
perimfov_vectors(3,3,3) = 300.0

 perimfov_vectors(1,4,3) = 300.0
perimfov_vectors(2,4,3) = -300.0
perimfov_vectors(3,4,3) = 300.0

 infovvector(1,1) = 0.0
infovvector(1,2) = 0.0
infovvector(1,3) = 100.0

 infovvector(2,1) = 0.0
infovvector(2,2) = 0.0
infovvector(2,3) = 200.0

 infovvector(3,1) = 0.0
infovvector(3,2) = 0.0
infovvector(3,3) = 300.0

 asciiutc = '1995-06-21T11:04:57.987654Z'
numvalues = 3
numfovperimvec = 4
altitude = 10000.0
latitude = 0.32
longitude = 2.333

 returnstatus =
pgs_csc_earthpt_fov(numvalues,startutc,offsets,
 PGSd_TRMM,'WGS84',latitude,
 longitude,altitude,numfovperimvec,
 infovvector,perimfov_vectors,
 infovflag,sctoearthptvec)

 6-462 333-EED-001, Revision 02

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: At each time, the tool determines if the Earth point at (latitude, longitude,
altitude) is in the FOV, setting inFOVflag = PGS_TRUE if so, else
PGS_FALSE. The vector from SC to Earth point is also returned, whether
or not the Earth point is in the FOV, and even if it is on the far side of the
Earth. Test for the spacecraft to Earth point being equal to 1.0e50 to avoid
processing Earth points that could not be determined because of one or
more errors in the transformation.

 The FOV is always specified in SC coordinates. For an instrument fixed to
the SC, use the same FOV description always. For scanning instruments,
user should provide the description appropriate to the scan instrument.
numFOVperimVec should be at least 3. The tool determines if the Earth
point lies within the perimeter defined by the vectors perim–
FOVvectors[][][3]. The first index in C (last in FORTRAN) is the time
offset index and the second must be sequential around the FOV perimeter.
If the altitude is unknown use zero.

 The vector inFOVvector[][3] must be defined in SC coordinates and must
lie within the FOV. The last index in C, (first in FORTRAN) on these
vectors is for X,Y, and Z, components in SC coordinates. It is necessary
for the user to supply a vector within the FOV because on the surface of a
sphere, a closed curve or "perimeter" does not have an inside nor outside,
except by arbitrary definition; i.e., this vector tells the algorithm which
part of sky is inside the FOV, which outside. If the vector is well centered
in the FOV, the algorithm will be faster.

 The vectors "perimFOV_vectors[][][3]" defining the FOV perimeter can
be in clock or counter–clockwise sequence. If the FOV perimeter vectors
are supplied out of order, the algorithm will run but the results are
unpredictable. The input vectors need not be normalized but must not be
zero.

 See Section 6.3.4.8 Conversion System Coordinate Tool Notes

 See Section 6.2.7.5.1 (UT1-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1090

 6-463 333-EED-001, Revision 02

Estimate Refraction of Ray

NAME: PGS_CSC_SpaceRefract()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_SpaceRefract(
 PGSt_double spaceZenith,
 PGSt_double altitude,
 PGSt_double latitude,
 PGSt_double *surfaceZenith,
 PGSt_double *displacement)

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function pgs_csc_spacerefract(spacezenith,altitude,
 latitude,surfacezenith, displacement)
 double precision spacezenith
 double precision altitude
 double precision latitude
 double precision surfacezenith
 double precision displacement

DESCRIPTION: This function estimates the refraction of a ray incident from space or a line
of sight from space to the Earth's surface based on the unrefracted zenith
angle (most common algorithms, intended for ground based observation,
require knowledge of the refracted, not the unrefracted zenith angle). The
algorithm is suitable for:

a. approximate determination of the apparent Solar zenith angle from the
true (geometrical, unrefracted) Solar zenith angle (obviously, also
applicable to Lunar zenith angle, etc.)

b. correction of the viewing angle from space, to approximately remove
the effects of refraction

 The method is briefly indicated in the NOTES, q.v. for various caveats.

 6-464 333-EED-001, Revision 02

INPUTS:

Table 6-217. PGS_CSC_SpaceRefract Inputs
Name Description Units Min Max

spaceZenith unrefracted zenith angle radians 0 pi/2 (90 deg)
altitude altitude off the geoid meters -1000 50000
latitude latitude radians -pi/2 pi/2

OUTPUTS:

Table 6-218. PGS_CSC_SpaceRefract Outputs
Name Description Units Min Max

surfaceZenith refracted zenith angle radians 0 n/a
displacement displacement of the footpoint of ray radians 0 ~0.01

RETURNS:

Table 6-219. PGS_CSC_SpaceRefract Returns
Return Description

PGS_S_SUCCESS Successful return
PGS_CSC_BAD_LAT a latitude out of the range (- pi/2, pi/2) was entered
PGS_CSC_E_INVALID_ZENITH a negative zenith angle was entered
PGSCSC_W_INVALID_ALTITUDE Attempt to calculate refraction at point too far below Earth's

surface
PGSCSC_W_BELOW_HORIZON Attempt to calculate refraction of ray below horizon

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double spaceZenith=0.4;
PGSt_double altitude=5000.0;
PGSt_double latitude= - 0.2 ; **** not implemented at
 present ***
PGSt_double surfaceZenith;
PGSt_double displacement;

 returnStatus = PGS_CSC_SpaceRefract(spaceZenith,altitude,
 latitude,&surfaceZenith,
 &displacement)

 {
 ** test errors,
 take appropriate

 6-465 333-EED-001, Revision 02

 action **
}

FORTRAN: implicit none

 integer pgs_csc_spacerefract
integer returnstatus
double precision spacezenith
double precision altitude
double precision latitude
double precision surfacezenith
double precision displacement

 data spacezenith /0.4/
data altitude /5000.0/
data latitude /-0.2/

 returnstatus = pgs_csc_spacerefract(spacezenith,altitude,
 latitude,surfacezenith,
 displacement)

 if(returnstatus .ne. pgs_s_success) go to 90
write(6,*) surfacezenith,displacement

 90 write(6,99)returnstatus
99 format('ERROR:',I15)

NOTES: This algorithm is intended as a mean-atmosphere approximation, valid for
white light (for example, sunlight). Refraction is quite wavelength
dependent, and in the atmosphere it will also depend strongly on local
conditions (e.g., the weather). The present algorithm is intended to be a
reasonable approximation such that to do better one would need local and,
for large zenith angles, regional weather.

 Caveat: The altitude is used ONLY to obtain the air pressure, which is
then used to obtain the surface index of refraction. Users who employ an
inflated Earth radius in geolocation should be especially careful to replace
any derived altitude with the height in meters above the geoid before
calling this function.

 The method is based on the author's calculations, using a conservation law
originally due to W. Chauvenet, for the important difference z0 - z', and an
empirical refraction algorithm in Equation 3.283-1, p. 144, Astron.
Almanac Supplement (U.S. Naval Observatory) to derive the less
important displacement.

 The (horizontal) displacement of the ray is in a vertical plane containing
the ray and is in the sense that the actual (refracted) ray will meet the Earth
d = (displacement)*Re meters from the geometrical (unrefracted) position,
on the side towards the horizon.

 Outer Space Here

 6-466 333-EED-001, Revision 02

 .
 . unrefracted ray
 .
 refracted ray .*
 . * unrefracted ray
 _____________________.__*________________ Earth surface
 d
 the angle "displacement" is the angle that the displacement in meters "d"

subtends at Earth center.
 The following table exemplifies results at sea level, using a conversion of

6371000 m per radian on the displacement.

Table 6-220. Altitude – Sea Level
Zenith Angle in Space

(deg)
Zenith Angle at Surface

(deg)
Refraction

(deg)
Linear Displacement

(meters)
10.000000 9.997066 0.002934 0.549064
20.000000 19.993944 0.006056 1.222937
30.000000 29.990394 0.009606 2.221314
40.000000 39.986039 0.013961 3.982978
45.000000 44.983363 0.016637 5.464087
50.000000 49.980174 0.019826 7.725334
55.000000 54.976243 0.023757 11.398788
60.000000 59.971192 0.028808 17.845724
61.000000 60.969996 0.030004 19.696711
62.000000 61.968722 0.031278 21.816620
63.000000 62.967361 0.032639 24.256691
64.000000 63.965905 0.034095 27.080360
65.000000 64.964340 0.035660 30.366779
70.000000 69.954333 0.045667 58.380584
75.000000 74.938025 0.061975 136.072953
76.000000 75.933417 0.066583 166.728721
77.000000 76.928121 0.071879 207.384912
78.000000 77.921967 0.078033 262.469333
79.000000 78.914723 0.085277 338.977167
80.000000 79.906069 0.093931 448.379942
81.000000 80.895543 0.104457 610.332976
82.000000 81.882461 0.117539 860.316290
83.000000 82.865762 0.134238 1266.536004
84.000000 83.843713 0.156287 1970.638000
85.000000 84.813286 0.186714 2974.066487
86.000000 85.768718 0.231282 4858.394025
87.000000 86.697712 0.302288 8677.416632
88.000000 87.569758 0.430242 17538.457911
89.000000 88.295108 0.704892 41818.325388
90.000000 88.619113 1.380887 113429.256196

 Note that the linear displacement at 88 degrees zenith angle is about 17.5
km—very substantial. Because of the very approximate atmosphere model,

 6-467 333-EED-001, Revision 02

this number could vary by perhaps 25% depending on weather in
temperate and tropical regions; in the Arctic it would be considerably
smaller. The displacement at 90 degrees incidence, over 113 km, is only
suggestive and could easily vary by 50%.

The increments in latitude and longitude due to refraction are:

Direction Value
latitude (φ) dAng * cos(ψ)
longitude (λ) dAng * sin(ψ)/cos(φ)

where ψ is the azimuth from PGS_CSC_ZenithAzimuth(). The expression
for longitude is singular at the North and South poles and the user should
avoid using it there, or within too close range. When |latitude| > π - dAng,
the point is so near the pole that the displacement of the ray can be
assumed to be South at the North pole and North at the South pole; but
when starting at either pole, the longitude (not its increment) must be
found from -atan2(yray,xray) where (xray,yray,zray) are the components of
the look vector in ECR. After calling PGS_CSC_SpaceRefract(), then, the
user who is interested in the displacement in latitude and longitude needs
to implement the equations above and, for the exceptional case at a pole,
the alternate just explained: latitude = dAng, longitude = -atan2(yray,xray).
The Toolkit software does not perform these operations, which are a user
responsibility if the positional correction is desired.

 The composition of the atmosphere was obtained from Allen's
"Astrophysical Quantities, 2nd ed." (London, the Athlone Pre, 1976) p.
121, because the U.S. Standard Atmosphere (NOAA, 1976) is bone dry,
which is unrealistic.

 The atmosphere model is used only to get the index of refraction at sea
level. The latitude dependence is that the sea level temperature and mean
scale height are functions of latitude.

 The calculations are based on the geometry of a spherical Earth. User may
employ her/his favorite Earth radius to transform radians of displacement
to meters. See also “Theoretical Basis of the SDP Toolkit Geolocation
Package for the ECS Project”, Document 445-TP-002-002, May 1995, by
P. Noerdlinger, where the equation to transform displacement magnitude
to North and East components is given.

REQUIREMENTS: PGSTK–0860, PGSTK-1080

 6-468 333-EED-001, Revision 02

Get Field-of-View Footprint and Pixel Centers

NAME: PGS_CSC_GetFOV_Pixel()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_GetFOV_Pixel(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 char earthEllipsTag[50],
 PGSt_boolean accurFlag,
 PGSt_double pixelUnitvSC[][3],
 PGSt_double offsetXYZ[][3],
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_double pixelUnitvECR[][3],
 PGSt_double slantRange[],
 PGSt_double velocDoppl[])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function pgs_csc_getfov_pixel(spacecrafttag,numvalues,asciiutc,
 offsets, earthellipstag,accurflag,
 pixelunitvsc,offsetxyz,latitude,
 longitude,pixelunitvecr,
 slantrange,velocdoppl)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 character*49 earthellipstag
 integer accurflag
 double precision pixelunitvsc(3,*)
 double precision offsetxyz(3,*)
 double precision latitude(*)

 6-469 333-EED-001, Revision 02

 double precision longitude(*)
 double precision pixelunitvecr(3,*)
 double precision slantrange(*)
 double precision velocdoppl(*)

DESCRIPTION: This function obtains the latitude and longitude of the intersection of a line
of sight with the spheroidal Earth, the slant range from Spacecraft to look
point, and the Doppler velocity along the line of sight. The ECR pixel
vector is also returned; it can be used, for example, to determine the zenith
angle of the line of sight. The line of sight is defined by a unit vector in the
Spacecraft frame of reference and a time. (The unit vector along the line of
sight is called a "look vector" in the sequel.)

 The Doppler velocity is true, in the sense that it is relative to the Earth's
surface.

INPUTS:

Table 6-221. PGS_CSC_GetFOV_Pixel Inputs
Name Description Units Min Max

spacecraftTag spacecraft identifier N/A N/A N/A
numValues number of input time offsets (to use ASCII time

with no offsets, set numValues =0 or set it =1
and make first [and only] offset = 0.0)

N/A 0 N/A

asciiUTC UTC start time in CCSDS ASCII Time A or B
format

N/A 1972-01-01 see NOTES

offsets array of time offsets SI seconds Max and Min such that floating
equivalent of asciiUTC+offset is
between asciiUTC Min and Max
values

EarthEllipsTag tag selecting Earth Ellipsoid model N/A N/A N/A
accurFlag flag to regulate accuracy N/A PGS_FALSE PGS_TRUE
pixelUnitvSC array of pixel unit vectors in SC coords N/A -1 1
offsetXYZ array of displacements of instrument boresight

from SC nominal center in SC coordinates(see
overall limit for length of this vector in
"RETURNS" section) (offsetXYZ is used only
when accurFlag == PGS_TRUE)

m -120 +120

OUTPUTS:

Table 6-222. PGS_CSC_GetFOV_Pixel Outputs
Name Description Units Min Max

latitude latitude of the lookpoint radians -pi/2 pi/2
longitude longitude of the lookpoint radians -pi pi
pixelUnitvECR ECR unit pixel vector N/A -1 +1
slantRange slant range: SC to lookpoint m 0 100000
velocDoppl Doppler velocity of the look point (+ meaning "away") m/s -8000 8000

 6-470 333-EED-001, Revision 02

RETURNS:

Table 6-223. PGS_CSC_GetFOV_Pixel Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_W_MISS_EARTH Look Vector fails to intersect Earth
PGSTD_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_ZERO_PIXEL_VECTOR Instrument pixel vector of zero length
PGSCSC_W_BAD_EPH_FOR_PIXEL Ephemeris Data missing for some pixels
PGSCSC_W_INSTRUMENT_OFF_BOARD Instrument offset from SC center is > 120 m which is considered

unreasonably large (applicable only when accurFlag = PGS_TRUE)
PGSCSC_W_BAD_ACCURACY_FLAG Accuracy Flag neither PGS_TRUE nor PGS_FALSE
PGSCSC_E_BAD_ARRAY_SIZE The user has supplied a negative number of time offsets
PGSCSC_W_DEFAULT_EARTH_MODEL Invalid EarthEllipsTag; WGS84 model used
PGSCSC_W_DATA_FILE_MISSING A file such as the ephemeris, utcpole, Earth Model or leap seconds

file is missing
PGSCSC_E_NEG_OR_ZERO_RAD One of the Earth axes is zero or negative
PGSMEM_E_NO_MEMORY Malloc operation for scratch memory failed
PGSTD_E_NO_LEAP_SECS no leap seconds data available for input time
PGSTD_E_TIME_FMT_ERROR format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR value error in asciiUTC
PGSCSC_W_PREDICTED_UT1 predicted UT1 value used
PGSCSC_E_NO_UT1_VALUE no UT1 value available
PGS_E_TOOLKIT Error in Toolkit—for example, inconsistent error message from a

subordinate function
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input

EXAMPLES:

C: #include <PGS_CSC.h>
char asciiUTC[28] = "1994-01-15T12:21:33.9939Z";
PGSt_tag spacecraftTag = PGSd_EOS_AM;
char EarthEllipsTag[50] = "WGS84";
PGSt_double offsets[4] = {0.0,0.1,2.0,30.0};
PGSt_double pixelUnitvSC[4][3];
PGSt_double offsetXYZ[4][3];
PGSt_integer numValues = 4;
PGSt_boolean accurFlag = PGS_FALSE;

 PGSt_double latitude[4];
PGSt_double longitude[4];
PGSt_double velocDoppl[4];
PGSt_double slantRange[4];
PGSt_double pixelUnitvECR[4][3];
PGSt_SMF_status returnStat;

 6-471 333-EED-001, Revision 02

PGSt_SMF_status code;
char msg[240];
char mnemonic[31];
int i;
int jj;

 for (i=0;i<4;i++)
 for(jj=0;jj<3 ;++jj)
 offsetXYZ[i][jj] = 0.0;

 /** initialize pixel unit vectors
 All but the 3rd case hit Earth; to miss Earth reverse
 the last component of any other one **/

 pixelUnitvSC[0][0] = 0.03;
pixelUnitvSC[0][1] = 0.12;
pixelUnitvSC[0][2] = 0.08;

 pixelUnitvSC[1][0] = -0.2;
pixelUnitvSC[1][1] = 0.12;
pixelUnitvSC[1][2] = 0.6;

 /**This case will display error**/

 pixelUnitvSC[2][0] = -0.0;
pixelUnitvSC[2][1] = 0.00;
pixelUnitvSC[2][2] = 0.0;

 pixelUnitvSC[3][0] = -0.2;
pixelUnitvSC[3][1] = -0.12;
PixelUnitvSC[3][2] = 0.6;

 returnStat = PGS_CSC_GetFOV_Pixel(spacecraftTag,numValues,
 asciiUTC,offsets,
 EarthEllipsTag,accurFlag,
 pixelUnitvSC,offsetXYZ,
 latitude,longitude,
 pixelUnitvECR,santRange,
 velocDoppl);

 printf(" Toolkit return value: %d\n\n",returnStat);

 PGS_SMF_GetMsg(&code,mnemonic,msg);
printf(" Return %s: %s\n\n",mnemonic,msg);

 printf(" accurFlag == %d Earth Tag == %s ECR Pixels:\n"
 "%15.11lg %15.11lg %15.11lg\n"
 "%15.11lg %15.11lg %15.11lg\n "
 "%15.11lg %15.11lg %15.11lg\n"

 6-472 333-EED-001, Revision 02

 "%15.11lg %15.11lg %15.11lg\n",
 accurFlag,EarthEllipsTag,
 pixelUnitvECR[0][0],pixelUnitvECR[0][1],
 pixelUnitvECR[0][2],
 pixelUnitvECR[1][0],pixelUnitvECR[1][1],
 pixelUnitvECR[1][2],
 pixelUnitvECR[2][0],pixelUnitvECR[2][1],
 pixelUnitvECR[2][2],
 pixelUnitvECR[3][0],pixelUnitvECR[3][1],
 pixelUnitvECR[3][2]);

 /** Test for some variable like latitude =
 PGSd_GEO_ERROR_VALUE before further processing to avoid
 processing pixels that missed Earth or had zero pixel
 vector. In multi-pixel processing, results from good and
 bad pixels can be distinguished only by answers being
 PGSd_GEO_ERROR_VALUE; in single pixel processing return
 status indicates any error **/

 if(returnStatus != PGS_S_SUCCESS)
{
 /** print results - latitude, longitude, etc.; test
 errors, take appropriate action **/
}

FORTRAN: implicit none

 parameter(numPixels = 4)
integer pgs_csc_getfov_pixel
integer spacecrafttag
integer numvalues
character*27 asciiutc
double precision offsets(numPixels)
character*49 earthellipstag
integer accurflag
double precision pixelUnitvSC(3,numPixels)
double precision offsetXYZ(3,numPixels)
double precision latitude(numPixels)
double precision longitude(numPixels)
double precision pixelUnitvECR(3,numPixels)
double precision slantRange(numPixels)
double precision velocDoppl(numPixels)
character*33 err
character*241 msg

 6-473 333-EED-001, Revision 02

 data offsets/360.0, 720.0, 1080.0, 1600.0/
asciiutc = '1991-07-27T11:04:57.987654Z'
spacecrafttag = PGSd_EOS_AM

 do 1 jj = 1,3
do 1 i = 1,4
 offsetXYZ(jj,i) = 0.0;

1 continue

!

! This puts instrument at the nominal SC center

1 For example, to put instrument on a 20 m boom fore of

! SC center, make offsetXYZ(1,i) = 20.0 for each i

! initialize pixel unit vectors

! All but the 3rd case hit Earth; to miss Earth reverse the

! last component of any other one

 pixelUnitvSC(1,1) = 0.03;
pixelUnitvSC(2,1) = 0.12;
pixelUnitvSC(3,1) = 0.08;

 pixelUnitvSC(1,2) = -0.2;
pixelUnitvSC(2,2) = 0.12;
pixelUnitvSC(3,2) = 0.6;

! This case will display error

 pixelUnitvSC(1,3) = -0.0;
pixelUnitvSC(2,3) = 0.00;
pixelUnitvSC(3,3) = 0.0;

 pixelUnitvSC(1,4) = -0.2;
pixelUnitvSC(2,4) = -0.12;
pixelUnitvSC(3,4) = 0.6;

returnstatus = pgs_csc_getfov_pixel(spacecrafttag,numvalues,
> asciiutc,offsets,
> earthellipstag,
> accurflag,pixelUnitvSC,
> offsetXYZ,latitude,
> longitude,pixelUnitvECR,
> slantRange,velocDoppl)

! Print output values

 6-474 333-EED-001, Revision 02

! Test for some variable like latitude = 1.0e50 before further

! processing to avoid processing pixels that missed Earth or had

! zero pixel vector

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: An accuracy flag is required, allowing two accuracy levels:

 Normal or PGS_FALSE

• do ECI to ECR transformation at moment of taking data

• consider instrument axis to pass through nominal center of spacecraft

 High or PGS_TRUE

• do ECI to ECR transformation with approximate allowance for Earth
rotation during the light travel time (spherical Earth approximation.)
This will slow the calculation slightly.

• user must supply vector offsetXYZ that represents the displacement
in meters of the instrument boresight from nominal spacecraft center.
(Only the part of the displacement orthogonal to the look vector will
have an effect.) Users invoking the High Accuracy option but wishing
not to take advantage of this feature should supply zeros for the
components of offsetXYZ.

 The maximum error in omitting this calculation is approximately as
follows for a worst case of a spacecraft at 700 km altitude, crossing the
equator and looking E or W:

Table 6-224. Error due to Earth Motion in Time of Flight of Light
Nadir Angle

(deg)
Slant Range (km) Worst Case Error (m) if

accurFlag = PGS_FALSE
0 700 1.1
30 830 1.3
40 945 1.5
50 1200 1.9
55 1410 2.1
60 1770 2.7
64 2440 3.7

 6-475 333-EED-001, Revision 02

 The nature of the error is a smooth distortion such that points near either
the East or the West limb would be assigned a longitude slightly to the
West in comparison with points near nadir. The effect could be somewhat
exaggerated, for some orbits, in terms of illumination changes near the
terminator.

 Caution: The user is advised that the spacecraft ephemeris refers to the
nominal center of the spacecraft. The displacements of individual
instruments relative to the center of the spacecraft are taken into account
herein through the vector offsetXYZ. When the flag "accurFlag" is set to
PGS_TRUE, the user should specify the instrument coordinates relative to
spacecraft center (in meters) with this vector. It WILL be used by the
present function, so if the user does not actually wish to employ it, then
offsetXYZ must be set to zero (all three components). If "accurFlag" is set
to PGS_FALSE, the displacement is ignored.

 TIME ACRONYMS:
 UT1 is: Universal Time

UTC is: Coordinated Universal Time
 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File
 REFERENCES FOR TIME:
 CCSDS 301.0–B–2 (CCSDS => Consultative Committee for Space Data

Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac. See also “Theoretical Basis of the SDP Toolkit
Geolocation Package for the ECS Project”, Document 445-TP-002-002,
May 1995, by P. Noerdlinger.

REQUIREMENTS: PGSTK–0930, PGSTK–1080, PGSTK–1083,

 6-476 333-EED-001, Revision 02

Precesses a Vector Between TDB Julian Date and J2000 Coordinates

NAME: PGS_CSC_precs2000()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_precs2000(
 PGSt_integer threeOr6,
 PGSt_double jedTDB[2],
 PGSt_boolean frwd,
 PGst_double posVel[])

FORTRAN: include 'PGS_SMF.f'
include 'PGS_TD.4.f'

 integer function pgs_csc_precs2000(threeor6,jedtdb,fwrd,posvel)
 integer threeor6
 double precision jedtdb(2)
 integer frwd
 double precision posvel(6)

DESCRIPTION: This tool precesses a vector from Celestial Coordinates of date in
Barycentric Dynamical Time (TDB) to J2000 coordinates or from J2000
coordinates to Celestial Coordinates of date in Barycentric Dynamical
Time (TDB).

INPUTS:

Table 6-225. PGS_CSC_precs2000 Inputs
Name Description Units Min Max

jedTDB[2] TBD (Barycentric Dynamical Time) as a Julian
Date to or from which the vector is to be
processed

days ANY ANY

frwd flag for sense of precession:
PGS_TRUE if precessing from J2000
 to jedTDB
PGS_FALSE if precessing from
 jedTDB to J2000

T/F N/A N/A

posVel vector (position and velocity) in final reference
frame:
posvel[0-2] position
posvel[3-5] velocity

m
m/s

ANY
ANY

ANY
ANY

 6-477 333-EED-001, Revision 02

OUTPUTS:

Table 6-226. PGS_CSC_precs2000 Outputs
Name Description Units Min Max

posVel vector (position and velocity) in final reference frame:
posvel[0-2] position
posvel[3-5] velocity

m
m/s

ANY
ANY

ANY
ANY

RETURNS:

Table 6-227. PGS_CSC_precs2000 Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_BAD_ARRAY_SIZE The size of the vector is not either 3 or 6
PGSCSC_E_BAD_DIRECTION_FLAG The value of the direction flag is not either PGS_TRUE or PGS_FALSE

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double jedTDB[2]={2449720.5,0.25};
PGSt_double posVel[6]={6400000.0,-5000000.0,40000.0,
 4000.0,7000.0,-6000.0};

 ** precess the vector **

 returnStatus = PGS_CSC_precs2000(6,jedTDB,PGS_TRUE,posVel);

 ** the input vector "posVel" has been overwritten with the
 precessed value **

FORTRAN: implicit none

 integer pgs_csc_precs2000
integer returnstatus
integer threeor6
double precision jedtdb(2)
double precision posvel(6)

 data jedtdb/2449720.5,0.25/
data posvel/6400000.0,-5000000.0,40000.0,4000.0,7000.0,-
 6000.0/

 threeor6 = 6

 6-478 333-EED-001, Revision 02

 returnstatus = pgs_csc_nutate2000(threeor6,jedtdb,frwd,
 posvel)

! the input vector "posvel" has been overwritten with the precessed value

NOTES: This function is a simplified version of PGS_CSC_precs3or6(). This
function is specific to the case of precessing to or from the epoch of J2000.
The various coefficients used are the constants that result for
this epoch.

 This function produces an output vector that overwrites the input vector.
The code was kept this way to preserve its heritage. The user is cautioned
that her/his input vector will be therefore be altered by this function.
The underlying rotation functions do not have this property.

 TIME ACRONYMS:
 TDB is: Barycentric Dynamical Time
 JULIAN DATES:
 Format:
 Toolkit Julian dates are kept as an array of two real (high precision)

numbers (C: PGSt_double, FORTRAN: DOUBLE PRECISION). The first
element of the array should be the half integer Julian day (e.g., N.5 where
N is a Julian day number). The second element of the array should be a
real number greater than or equal to zero AND less than one (1.0)
representing the time of the current day (as a fraction of that (86400
second) day. This format allows relatively simple translation to calendar
days (since the Julian days begin at noon of the corresponding calendar
day). Users of the Toolkit are encouraged to adhere to this format to
maintain high accuracy (one number to track significant digits to the left of
the decimal and one number to track significant digits to the right of the
decimal). Toolkit functions that do NOT require a Julian type date as an
input and return a Julian date will return the Julian date in the above
mentioned format. Toolkit functions that require a Julian date as an input
and do NOT return a Julian date will first convert the input date (internal)
to the above format. Toolkit functions that have a Julian date as both an
input and an output will assume the input is in the above described format
but will not check and the format of the output may not be what is
expected if any other format is used for the input.

 Meaning:
 Toolkit "Julian dates" are all based on UTC. A Julian date in any other

"time" (e.g., TAI, TDT, UT1, etc.) is based on the difference between that
"time" and the equivalent UTC time (differences range in magnitude from
0 seconds to about a minute).

 6-479 333-EED-001, Revision 02

 REFERENCES FOR TIME:
 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data

Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK–0930, PGSTK–1050

 6-480 333-EED-001, Revision 02

Nutate State Vector Between True of Date and Mean of Date

NAME: PGS_CSC_nutate2000()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_nutate2000(
 PGSt_integer threeOr6,
 PGSt_double jedTDB[2],
 PGSt_double dvnut[4],
 PGSt_boolean frwd,
 PGst_double posVel[])

FORTRAN: include 'PGS_SMF.f'
include 'PGS_CSC_4.f'

 integer function pgs_csc_nutate2000(threeor6,jedtdb,dvnutfwrd,posvel)
 integer threeor6
 double precision jedtdb(2)
 double precision dvnut(4)
 double precision frwd
 double precision posvel(*)

DESCRIPTION: This tool transforms a vector under nutation from Celestial Coordinates of
date in Barycentric Dynamical Time (TDB) to J2000 coordinates or from
J2000 coordinates to Celestial Coordinates of date.

INPUTS:

Table 6-228. PGS_CSC_nutate2000 Inputs (1 of 2)
Name Description Units Min Max

threeOr6 chooses a 3 or 6 dimensional vector to
nutate

N/A N/A N/A

jedTDB TBD (Barycentric Dynamical Time) as a
Julian Date to or from which the vector is
to be nutated (this variable is generally
referred to in Toolkit code as jedTDB

days ANY ANY

dvnut the two nutation angles and their rates,
output from “PGS_CSC_wahr2” (this
variable is generally referred to in Toolkit
code as dvnut)

rad/s -1.e-11 1.e-11

posVel vector (position and velocity) in initial
reference frame:
posvel[0-2] position
posvel[3-5] velocity

m
m/s

ANY
ANY

ANY
ANY

 6-481 333-EED-001, Revision 02

Table 6-228. PGS_CSC_nutate2000 Inputs (2 of 2)
Name Description Units Min Max

frwd flag for sense of nutation:
PGS_TRUE if nutating fromTrue of Date
at
 jedTDB to Mean of Date
PGS_FALSE if nutating from Mean of
Date
 to True of Date at jedTDB

T/F N/A N/A

OUTPUTS:

Table 6-229. PGS_CSC_nutate2000 Outputs
Name Description Units Min Max

posVel vector (position and velocity) in final reference frame:
posvel[0-2] position
posvel[3-5] velocity

m
m/s

ANY
ANY

ANY
ANY

RETURNS:

Table 6-230. PGS_CSC_nutate2000 Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_BAD_ARRAY_SIZE The size of the vector is not either 3 or 6
PGSCSC_E_BAD_DIRECTION_FLAG The value of the direction flag is not either PGS_TRUE or

PGS_FALSE

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double jedTDB[2]={2449720.5,0.25};
PGSt_double dvnut[4];
PGSt_double posVel[6]={6400000.0,-5000000.0,40000.0,
 4000.0,7000.0,-6000.0};

 ** get the nutation angles and rates **

 PGS_CSC_wahr2(jedTDB,dvnut);

 ** nutate the vector **

 returnStatus = PGS_CSC_nutate2000(6,jedTDB,dvnut,PGS_TRUE,
 posVel);

 6-482 333-EED-001, Revision 02

 ** the input vector "posVel" has been overwritten with the
 nutated value **

FORTRAN: implicit none

 integer pgs_csc_nutate2000
integer returnstatus
integer threeor6
double precision jedtdb(2)
double precision dvnut
double precision posvel(6)

 data jedtdb/2449720.5,0.25/
data posvel/6400000.0,-5000000.0,40000.0,4000.0,7000.0,
 -6000.0/

 threeor6 = 6

! get the nutation angles and rates

 returnstatus = pgs_csc_wahr2(jedtdb,dvnut)

! nutate the vector

 returnstatus = pgs_csc_nutate2000(threeor6,jedtdb,dvnut,
 frwd,posvel)

! the input vector "posvel" has been overwritten with the nutated
value

NOTES: Purpose: The case of transforming a vector from J2000 to True of Date,
requires first procession and then nutation. The intermediate system,
processed but not nutated, is the Mean of Date system. With the direction
flag at PGS_TRUE, this function transforms a vector (position and
velocity) from Mean of Date to True of Date. True of date has its Z axis
along the Earth’s true angular velocity and the X axis is toward the true
equinox of date-the intersection of the equator perpendicular to Z with the
ecliptic. Mean of date is arranged similarly, but ignoring nutation, so its
pole has a constant angle to the ecliptic, along which its X axis moves at a
constant rate.

 In the opposite case, with the direction flag at PGS_FALSE, i.e. in going
from arbitrary epoch to J2000, this function carries the vector from True of
Date to Mean of Date, after which it must be precessed to J2000 by the
function PGS_CSC_precs2000().

 This code was modified so it now takes either a 3 or 6 dimensional vector.
When 6 dimensions are used, they must be in the order (position, velocity)
because the transformation of velocity is slightly different. This function
produces an output vector that overwrites the input vector. The code was

 6-483 333-EED-001, Revision 02

kept this way to preserve its heritage. The user is cautioned that her/his
input vector will therefore be altered by this function. The underlying
rotation functions do not have this property.

 TIME ACRONYMS:

 TDB is: Barycentric Dynamical Time

 JULIAN DATES:

 Format:

 Toolkit Julian dates are kept as an array of two real (high precision)
numbers (C: PGSt_double, FORTRAN: DOUBLE PRECISION). The first
element of the array should be the half integer Julian day (e.g., N.5 where
N is a Julian day number). The second element of the array should be a
real number greater than or equal to zero AND less than one (1.0)
representing the time of the current day (as a fraction of that (86400
second) day. This format allows relatively simple translation to calendar
days (since the Julian days begin at noon of the corresponding calendar
day). Users of the Toolkit are encouraged to adhere to this format to
maintain high accuracy (one number to track significant digits to the left of
the decimal and one number to track significant digits to the right of the
decimal). Toolkit functions that do NOT require a Julian type date as an
input and return a Julian date will return the Julian date in the above
mentioned format. Toolkit functions that require a Julian date as an input
and do NOT return a Julian date will first convert the input date (internal)
to the above format. Toolkit functions that have a Julian date as both an
input and an output will assume the input is in the above described format
but will not check and the format of the output may not be what is
expected if any other format is used for the input.

 Meaning:

 Toolkit "Julian dates" are all based on UTC. A Julian date in any other
"time" (e.g., TAI, TDT, UT1, etc.) is based on the difference between that
"time" and the equivalent UTC time (differences range in magnitude from
0 seconds to about a minute).

 REFERENCES FOR TIME:

 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK–0914, PGSTK–0930, PGSTK–1050

 6-484 333-EED-001, Revision 02

Transform from ECI J2000 to ECI True of Date Coordinates

NAME: PGS_CSC_J2000toTOD()

SYNOPSIS:

C: #include <PGS_CSC.h>

PGSt_SMF_status
PGS_CSC_J2000toTOD(
 PGSt_integer threeOr6,
 PGSt_double secTAI93
 PGSt_double posvelECI[6],
 PGSt_double posvelTOD[6])

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_SMF.f'

integer function pgs_csc_j2000totod(threeor6,sectai93,posveleci,
> posveltod)
 integer threeor6
 double precision sectai93
 double precision posveleci(*)
 double precision posveltod(*)

DESCRIPTION: This function transforms from ECI (J2000) coordinates to TOD (true of
date) coordinates.

INPUTS:

Table 6-231. PGS_CSC_J2000toTOD.c Inputs
Name Description Units Min Max

threeOr6 dimension of input vector N/A 3 6
secTAI93 TOD time seconds
posvelECI[] Vector (position and possibly velocity) in ECI

J2000

posvelTOD[0] x position meters
posvelTOD[1] y position meters
posvelTOD[2] z position meters
posvelTOD[3] x velocity m/s
posvelTOD[4] y velocity m/s
posvelTOD[5] z velocity m/s

 6-485 333-EED-001, Revision 02

OUTPUTS:

Table 6-232. PGS_CSC_J2000to.TOD.c Outputs
Name Description Units Min Max

posvelTOD[6] Vector (position and possibly velecity)
in ECI TOD

posvelECI[0] x position meters
posvelECI[1] y position meters
posvelECI[2] z position meters
posvelECI[3] x velocity m/s
posvelECI[4] y velocity m/s
posvelECI[5] z velocity m/s

RETURNS:

Table 6-233. PGS_CSC_J2000toTOD Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_E_BAD_ARRAY_SIZE incorrect array size

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double secTAI93 = -44496000.0;
PGSt_double posvelECI[6] = {0.5,0.75,0.90,0.3,0.2,0.8};
PGSt_double posvelTOD[6];

returnStatus=
PGS_CSC_J2000toTOD(6,secTAI93,posvelECI,posvelTOD);

 if(returnStatus != PGS_S_SUCCESS)
{
/** test errors, take appropriate action **/
}

FORTRAN: implicit none

 integer returnstatus
integer pgs_csc_j2000totod
integer threeor6
double precision sectai93
double precision posveleci(6)

 6-486 333-EED-001, Revision 02

double precision posveltod(6)
integer cnt1
character*33 err
character*241 msg

 do 10 cnt1 = 1,6
 posveleci(cnt1) = 100 * cnt1
10 continue
sectai93 = -44496000.0
three0r6 = 6

 returnstatus=s_csc_j2000totod(threeor6,sectai93,posveleci,
 posveltod)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: If threeOr6 is 3, only position is transformed; if 6 then both position and
velocity.

REQUIREMENTS: PGSTK - 0910, 1050

 6-487 333-EED-001, Revision 02

Transform from ECI True of Date to ECI J2000 Coordinates

NAME: PGS_CSC_TODtoJ2000()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_TODtoJ2000(
 PGSt_integer threeOr6,
 PGSt_double secTAI93,
 PGSt_double posvelTOD[6],
 PGSt_double posvelECI[6])

FORTRAN: include 'PGS_CSC_4.f'

 include 'PGS_SMF.f'

 integer function pgs_csc_todtoj2000(threeor6,sectai93,posveltod,
 posveleci)
 integer
 double precision
 double precision posveltod(*)
 double precision posveleci(*)

DESCRIPTION: This function transforms from TOD (true of date) coordinates to ECI
(J2000) coordinates.

INPUTS:

Table 6-234. PGS_CSC_TODtoJ2000.c Inputs
Name Description Units Min Max

threeOr6 dimension of input vector N/A 3 6
secTAI93 TOD time posvel TOD[6] seconds
posvelTOD[] Vector (position and possibly velocity) in ECI TOD
posvelTOD[0] x position meters
posvelTOD[1] y position meters
posvelTOD[2] z position meters
posvelTOD[3] x velocity m/s
posvelTOD[4] y velocity m/s
posvelTOD[5] z velocity m/s

 6-488 333-EED-001, Revision 02

OUTPUTS:

Table 6-235. PGS_CSC_TODtoJ2000.c Outputs
Name Description Units Min Max

posvelECI[] Vector (position and possibly velecity)
in ECI J2000

posvelECI[0] x position meters
posvelECI[1] y position meters
posvelECI[2] z position meters
posvelECI[3] x velocity m/s
posvelECI[4] y velocity m/s
posvelECI[5] z velocity m/s

RETURNS:

Table 6-236. PGS_CSC_TODtoJ2000c Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_E_BAD_ARRAY_SIZE incorrect array size

EXAMPLES:
C: PGSt_SMF_status returnStatus

PGSt_double secTAI93 = -44496000.0
PGSt_double posvelTOD[6] = 0.5,0.75,0.90,0.3,0.2,0.8};
PGSt_double posvelECI[6];

 returnStatus =
PGS_CSC_TODtoJ2000(6,secTAI93,posvelTOD,posvelECI);

 if(returnStatus != PGS_S_SUCCESS
{
/** test errors, take appropriate action **/
}

FORTRAN: implicit none

 integer pgs_csc_todtoj2000
integer returnstatus
integer threeor6
double precision sectai93
double precision posveltod(6)
double precision posveleci(6)
integer cnt1
character*33 err
character*241 msg

 6-489 333-EED-001, Revision 02

 do 10 cnt1 = 1,6
 posveltod(cnt1) = 100 * cnt1
10 continue
sectai93 = -44496000.0
three0r6 = 6

 returnstatus=pgs_csc_todtoj2000(threeor6,sectai93,posveltod,
> posveleci)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err,
endif

NOTES: If threeor6 is 3, only position is transformed; if 6 then both position and
velocity.

 TIME ACRONYMS:
 TAI is: International Atomic Time
 TDB is: Barycentric Dynamical Time
 TOOLKIT INTERNAL TIME (TAI):
 Toolkit internal time is the real number of continuous SI seconds since the

epoch of UTC 12 AM 1-1-1993. Toolkit internal time is also referred to
inthe toolkit as TAI.

 REFERENCES FOR TIME:
 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data

Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK - 0910, 1050

 6-490 333-EED-001, Revision 02

Determine if Location on Earth is in Day or Night

NAME: PGS_CSC_DayNight()

SYNOPSIS:

C: #include <PGS_CBP.h>

 PGSt_SMF_status
PGS_CSC_DayNight(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_tag sunZenithLimitTag,
 PGSt_boolean afterDark[])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_CBP_6.f'
include 'PGS_CSC_4.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function pgs_csc_daynight(numvalues,asciiutc,offsets,latitude,
 longitude, sunzenithlimittag, afterdark)
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision latitude(*)
 double precision longitude(*)
 integer sunzenithlimittag
 integer afterdark(*)

DESCRIPTION: This function determines whether each point in a set of input Earth
locations is in day or night at the corresponding input times. The function
accepts an input start time, array of offsets from that start time, and an
array of corresponding geodetic latitudes and longitudes. It then
determines whether each time and point on the surface of the Earth
(altitude = 0 km) is night, based on definitions of either civil twilight or
night, nautical night, or astronomical night.

 6-491 333-EED-001, Revision 02

INPUTS:

Table 6-237. PGS_CSC_DayNight Inputs
Name Description Units Min Max

numValues number of input time offsets,
longitudes, and latitudes

N/A 0 any

asciiUTC UTC start time in CCSDS ASCII
Time Code A or B format

N/A 1972–01-01 see NOTES

offsets array of time offsets seconds Max and Min such that
asciiUTC+ offset is between
asciiUTC Min and Max values

latitude array of geodetic latitudes for
array of time offsets

radians -pi/2 +pi/2

longitude array of longitudes corresponding
to time offsets

radians -2*pi 2*pi

sunZenithLimitTag tag specifying basis of day/night
determination
Allowed values:
PGSd_CivilTwilight—(end of day)
 sun deemed to set within 90
 degrees 50 arc minutes from
 zenith
PGSd_CivilNight—(end of civil
 twilight) sun more than 96
 degrees from zenith (same as
 start of Nautical twilight)
PGSd_NauticalNight—(end of
 Nautical twilight) sun more than
 102 degrees from zenith.
PGSd_AstronNight—(end of
 Astronomical Twilight) sun
 more than 108 degrees from
 zenith.

N/A N/A N/A

OUTPUTS:

Table 6-238. PGS_CSC_DayNight Outputs
Name Description Units Min Max

afterDark array of answers:
Array values will be either PGS_TRUE or
PGS_FALSE, according to the tag
definition. PGS_TRUE means point is in
night, PGS_FALSE means point is in
daylight or twilight.

Boolean see
DESCRIPTION

see
DESCRIPTION

 6-492 333-EED-001, Revision 02

RETURNS:

Table 6-239. PGS_CSC_DayNight Returns
Return Description

PGS_S_SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap second value available in table for at least one

of the input offset times; a linear approximation was
used to get value

PGSCSC_E_INVALID_LIMITTAG Invalid sunZenithLimitTag
PGSCSC_E_BAD_ARRAY_SIZE numValues (and array size) is less than zero
PGSCSC_W_ERROR_IN_DAYNIGHT An error occurred in computing at least one afterDark

value
PGSCSC_W_BAD_TRANSFORM_VALUE Invalid ECItoECR transformation
PGSCSC_W_BELOW_HORIZON Sun is below horizon
PGSCSC_W_PREDICTED_UT1 At least one of the values obtained from the utcpole.dat

file is 'predicted'
PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGSTD_E_BAD_INITIAL_TIME Initial input time cannot be deciphered
PGSCBP_E_TIME_OUT_OF_RANGE Start UTC time is not in the range of the planetary

ephemeris file (de200.eos)
PGSCBP_E_UNABLE_TO_OPEN_FILE Ephemeris file cannot be opened
PGSMEM_E_NO_MEMORY No memory available to allocate vectors
PGS_E_TOOLKIT Something unexpected happened, execution of function

ended prematurely

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
PGSt_integer counter;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double latitude[ARRAY_SIZE]= {0.5,0.75,0.90};
PGSt_double longitude[ARRAY_SIZE] = {1.0,2.0,3.0};
PGSt_tag sunZenithLimitTag = PGSd_CivilTwilight;
PGSt_boolean afterDark[ARRAY_SIZE];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30");
returnStatus = PGS_CSC_DayNight(numValues,asciiUTC,offsets,

 6-493 333-EED-001, Revision 02

 latitude,longitude,
 sunZenithLimitTag,
 afterDark);

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}
printf("start time:%s",asciiUTC);
counter = 0;
while(counter <= numValues)
{
 printf("Offset: %lf Latitude:%lf Longitude:%lf
 Day/Night:%u", offset[counter],
 latitude[counter], longitude[counter],
 afterDark[counter]);
 counter++;
}

FORTRAN: implicit none

 integer pgs_csc_daynight
parameter (array_size=3)
integer returnstatus
integer counter
integer numvalues
character*27 asciiutc
double precision offsets(array_size)
double precision latitude(array_size)
double precision longitude(array_size)
integer sunzenithlimittag
integer afterdark(array_size)

 data offsets/3600.0,7200.0,10800.0/
data latitude/0.5,0.75,0.90/
data longitude/1.0,2.0,3.0/
numvalues = array_size
asciiutc = '1991-01-01T11:29:30'
sunzenithlimittag = pgsd_civiltwilight

 returnstatus = pgs_csc_daynight(numvalues,asciiutc,offsets,
 latitude,longitude,
 sunzenithlimittag,
 afterdark)

 6-494 333-EED-001, Revision 02

 if(returnstatus .ne. pgs_s_success) go to 90

 write(6,*) asciiutc
if(numvalues.eq.0) numvalues = 1
do 40 counter = 1,numvalues,1
 write(6,*)offsets(counter),latitude(counter),
 longitude(counter),afterdark(counter)

 40 continue

 90 write(6,99)returnstatus

 99 format('ERROR:',I50)

NOTES: If there is an error in computing one or more of the afterDark values,
which does not affect the computation of the other values for the input
offset times, it is set to the returnStatus value.

 An Earth model tag is not needed because the latitude is geodetic. Input
latitude values should be based on an Earth model (flattening) consistent
with that used for other data analysis and processing for the same
spacecraft.

 User supplies one of the four sunZenithLimitTags as part of the input
information. Users wishing to know if a point is in Nautical Twilight or
darker should use the Civil Night tag; those wishing to determine whether
the point is after the start of Astronomical Twilight should use the
Nautical Night tag. An example of tag usage is the following: if the tag is
set to Nautical night and the Sun zenith angle is less than 102 degrees,
afterDark will be false; if 102 degrees or more it will be true.

 TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

REQUIREMENTS: PGSTK–0860, PGSTK–0930

 6-495 333-EED-001, Revision 02

Calculate Nutation Angles

NAME: PGS_CSC_wahr2()

SYNOPSIS:
C: #include <PGS_CSC.h>
 PGS_CSC_wahr2(

 PGSt_double ddjd[2],
 PGSt_double dvnut[4])

FORTRAN: include 'PGS_SMF.f'
 integer function pgs_csc_wahr2(ddjd,dvnut)

 double precision ddjd(2)
 double precision dvnut(4)

DESCRIPTION: Calculates nutation angles delta psi and delta epsilon, and their rates of
change, referred to the ecliptic of date, from the Wahr series.

INPUTS:

Table 6-240. PGS_CSC_wahr2 Inputs
Name Description Units Min Max

ddjd[2] Barycentric Dynamical Time as a Julian Date N/A ANY ANY
ddjd[0] half-integral Julian day
ddjd[1] Julian day fraction

OUTPUTS:

Table 6-241. PGS_CSC_wahr2 Outputs
Name Description Units Min Max

dvnut[0] nutation in longitude radians -0.01 0.01
dvnut[1] nutation in obliquity radians -0.001 0.001
dvnut[2] nutation rate in longitude radians/sec -1.16e-1 +1.16e-11
dvnut[3] nutation rate in obliquity radians/sec -1.16e-13 +1.16e-13

RETURNS:

Table 6-242. PGS_CSC_wahr2 Returns
Return Description

PGS_S_SUCCESS Successful return

 6-496 333-EED-001, Revision 02

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double jedTDB[2]={2449720.5,0.25};
PGSt_double dvnut[4];

 returnStatus = PGS_CSC_wahr2(jedTDB,dvnut);

 ** do something with shiny new nutation angles and rates **
 :
 :

FORTRAN: implicit none

 integer pgs_csc_wahr2
integer returnstatus
double precision jedtdb(2)
double precision dvnut(4)

 data jedtdb/2449720.5,0.25/

 returnstatus = pgs_csc_wahr2(jedtdb,dvnut)

! do something with shiny new nutation angles and rates

 :

 :

NOTES: From table 1, "proposal to the International Astronomical Union (IAU)
working group on nutation," John M. Wahr and Martin L. Smith (1979)
subroutine to compute nutation angles and rates from expressions given in
Supplement to Astronomical Almanac 1984, S21–S26. Ref: P.K.
Seidelmann, V.K. Abalakin, H. Kinoshita, J. Kovalevsky, C.A. Murray,
M.L. Smith, R.O. Vicente, J.G. Williams, Ya. S. Yatskiv: 1982, "1980
IAU Theory of Nutation", Celestial Mechanics Journal, vol 27., p. 79–105

 Changes to code prior to acquisition for ECS project:
 Lieske 3/91. NUTATION in the IAU J2000 system. Univac version

obtained from Myles Standish, (subroutine WAHR) who had obtained it
from USNO. Re-ordered terms to match Astronomical Almanac 1984
table S23-S25 and corrected the rate for dPsi in the 0 0 2 -2 2 term.
Eliminated the equivalencies, common block and added necessary SAVEs.
Corrected the fundamental angles (L, L', F, D, Node) to match Almanac.

 Acquired from E. Myles Standish, JPL, 12/93 by Peter Noerdlinger. This
is not JPL certified code. Please do not modify the names of the variables
in this code. It is heritage code and we may receive updates. We may also
receive other related code with the same names for variables.

 Users concerned with speed may wish to avoid repeated calls where
possible. In this regard, the rates that are provided by Wahr2 can be used
either for estimating the error of using nearby times, or for short term

 6-497 333-EED-001, Revision 02

extrapolation. Note that in the original JPL code the rates issued by wahr2
are in radians per day; this routine returns the rates as radians per second.

REQUIREMENTS: PGSTK–0916, PGSTK–0930, PGSTK–1050

 6-498 333-EED-001, Revision 02

Get Greenwich Hour Angles

NAME: PGS_CSC_GreenwichHour()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_GreenwichHour(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double hourAngleGreenw[])

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_greenwichhour(numvalues, asciiutc, offsets(*),
 houranglegreenw(*))
 integer numvalues,
 character*27 asciiutc,
 double precision offsets(*),
 double precision houranglegreenw(*)

DESCRIPTION: This function computes hour angle of the Vernal Equinox at the
Greenwich meridian, accepting an input start time plus an array of time
offsets.

INPUTS:

Table 6-243. PGS_CSC_GreenwichHour Inputs
Name Description Units Min Max

numValues number of input time
offsets

N/A 0 any

asciiUTC UTC start time in CCSDS
ASCII Time Code A or B
format

N/A see Notes see Notes

offsets array of time offsets seconds Max and Min such that asciiUTC + offset is
between asciiUTC Min and Max values

 6-499 333-EED-001, Revision 02

OUTPUTS:

Table 6-244. PGS_CSC_GreenwichHour Outputs
Name Description Units Min Max

hourAngleGreenw array of values of the hour angle of the Vernal
Equinox at Greenwich; a value of 999999.0 is
returned for invalid offset times

hours 0 24

RETURNS:

Table 6-245. PGS_CSC_GreenwichHour Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_ERRORS_IN_GHA An error occurred in computing at least one Greenwich hour

angle
PGSCSC_W_PREDICTED_UT1 Data in utcpole.dat file is predicted (not final) value for at least

one input time
PGSTD_E_TIME_VALUE_ERROR Error in input time value
PGSTD_E_TIME_FMT_ERROR Error in input time format
PGSTD_E_NO_LEAP_SECS No leap seconds correction is available in leapsec.dat file for

at least one of the input times/offsets
PGS_E_TOOLKIT Something unexpected happened, execution of function ended

prematurely

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
PGSt_integer counter;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE]=
 {3600.0,7200.0,10800.0};
PGSt_double hourAngleGreenw[ARRAY_SIZE];

 numValues=ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30");
returnStatus = PGS_CSC_GreenwichHour(numValues,asciiUTC,
 offsets,
 hourAngleGreenw);

 6-500 333-EED-001, Revision 02

if(returnStatus != PGS_S_SUCCESS)
{
** test errors,
 take appropriate
 action **
}
printf("start time:%s",asciiUTC);
counter = 0;
while(counter < numValues)
{
 printf("Offset: %lf Hour Angle:%lf",offset[counter],
 hourAngleGreenw[counter]);
 counter++;
}

FORTRAN: implicit none

 parameter (array_size=3)
integer pgs_csc_greenwichhour
integer array_size
integer returnstatus
integer counter
integer numvalues
character*27 asciiutc
double precision offsets(array_size)
double precision houranglegreenw(array_size)

 data offsets/3600.0,7200.0,10800.0/
array_size = 3
numvalues = array_size
asciiutc = '1991-01-01T11:29:30'

 returnstatus = pgs_csc_greenwichhour(numvalues,asciiutc,
 offsets,
 houranglegreenw)

 if(returnstatus .ne. pgs_s_success) go to 90
write(6,*) asciiutc
if(numvalues.eq.0) numvalues = 1
do 40 counter = 1, numvalues,1
write(6,*)offsets(counter),houranglegreenw(counter)

 40 continue

 90 write(6,99)returnstatus

 99 format('ERROR:',A50)

 6-501 333-EED-001, Revision 02

NOTES: Historically, UT1 was used as a measure of time, but since 1958 it has
served only as a measure of Earth rotation. The only real difference
between UT1 and Greenwich Mean Sidereal Time (GMST) is that UT1
measures Earth rotation in regards to the vector from Earth center to the
mean sun (a fictitious point that traverses the celestial equator at the same
mean rate that the sun apparently traverses the ecliptic), while GMST
measures Earth rotation relative to the vernal equinox. Essentially, the
value of GMST in radians is larger than that of UT1 in radians by the ratio
of the mean solar day to the sidereal day; however, there are small
correction terms due to precession. The equation used in function
PGS_TD_gmst() is valid for the period 1950 to well past 2000, as long as
the definition of UT1 and the reference equinox (J2000) are not changed.
The basic limitation is the accuracy of UT1. Users obtaining UT1 from the
SDP Toolkit should observe time limitations in the function
PGS_TD_UTCtoUT1().

 TIME ACRONYMS:

 GMST is: Greenwich Mean Sidereal Time
TAI is: International Atomic Time
UT1 is: Universal Time
UTC is: Coordinated Universal Time

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

 REFERENCE FOR TIME:

 CCSDS 301.0–B–2 (CCSDS => Consultative Committee for Space Data
Systems Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac.

REQUIREMENTS: PGSTK–0770

 6-502 333-EED-001, Revision 02

Get Zenith and Azimuth of an ECR Vector at the Look Point

NAME: PGS_CSC_ZenithAzimuth()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ZenithAzimuth(
 PGSt_double vectorECR[3],
 PGSt_double latitude,
 PGSt_double longitude,
 PGSt_double altitude,
 PGSt_tag vectorTag,
 PGSt_boolean zenithOnlyFlag,
 PGSt_boolean refractFlag,
 PGSt_double *zenith,
 PGSt_double *azimuth
 PGSt_double *refraction)

FORTRAN: include 'PGS_CSC.f'
include 'PGS_CSC_4.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_zenithazimuth(vectorecr,latitude,longitude,altitude,
 vectortag,zenithonlyflag,
 refractflag,zenith,azimuth,
 refraction)
 double precision vectorECR[3]
 double precision latitude
 double precision longitude
 double precision altitude
 integer vectortag
 integer zenithonlyflag
 integer refractflag
 double precision zenith
 double precision azimuth
 double precision refraction

DESCRIPTION: Computes the zenith and the azimuth of a vector at the look point. This
tool allows for refraction if desired.

 6-503 333-EED-001, Revision 02

INPUTS:

Table 6-246. PGS_CSC_ZenithAzimuth Inputs
Name Description Units Min Max

vectorECR ECR vector whose zenith & azimuth is
desired (in case of PGSD_MOON do
not use a unit vector!—see NOTES)

meters or unit vector N/A N/A

latitude geodetic latitude radian -pi/2 pi/2
longitude longitude radian -2*pi 2*pi
altitude altitude off the geoid (altitude is an

input only when refracFlag is
PGS_TRUE see NOTES).

meters -2000 80000

vectorTag PGSd_CB, PGSd_moon, or
PGSd_Look or a CB identifier (see
NOTES)

N/A N/A N/A

zenithOnlyFlag omit azimuth calculation N/A N/A N/A
refracFlag turns on refraction N/A N/A N/A

OUTPUTS:

Table 6-247. PGS_CSC_ZenithAzimuth Outputs
Name Description Units Min Max

zenith zenith angle radian 0 1.6755 (96 deg)
azimuth azimuth E from N radian -pi +pi
refraction increase of zenith angle due to refraction radian 0 0.1

RETURNS:

Table 6-248. PGS_CSC_ZenithAzimuth Returns
Return Description

PGS_S_SUCCESS Successful execution
PGSCSC_W_BELOW_HORIZON Warning indicating the object is below horizon
PGSCSC_W_UNDEFINED_AZIMUTH The object is at the zenith. In this case azimuth is not

calculated
PGSCSC_W_NO_REFRACTION No refraction calculation done due to errors
PGSCSC_E_INVALID_VECTAG The input vector tag is not PGSd_CB, PGSd_MOON,

PGSd_LOOK or a celestial body identifier
PGSCSC_E_LOOK_PT_ALTIT_RANGE Look point altitude not reasonable
PGSCSC_E_ZERO_INPUT_VECTOR The input vector has zero length
PGS_E_TOOLKIT Unknown error occurred

 6-504 333-EED-001, Revision 02

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double vectorECR[3];
PGSt_double latitude = 0.2;
PGSt_double longitude = 0.1;
PGSt_double altitude = 0.0;
PGSt_tag vectorTag = PGSd_LOOK;
PGSt_boolean zenithOnlyFlag = PGS_FALSE;
PGSt_boolean refractFlag = PGS_FALSE;
PGSt_double zenith;
PGSt_double azimuth;
PGSt_double refraction;

 vectorECR[2] = -0.26;
vectorECR[1] = 0.0;
vectorECR[0] = sqrt(1 - vectorECR[2]*vectorECR[2]);

 returnStatus = PGS_CSC_ZenithAzimuth(vectorECR,latitude,
 longitude,altitude,
 vectorTag,
 zenithOnlyFlag,
 refractFlag,&zenith,
 &azimuth,&refraction)

 do some error handling
 if desired, convert zenith and azimuth to degrees
printf("zenith angle = %lf, azimuth = %lf\n", zenith,
 azimuth);

FORTRAN: implicit none

 integer pgs_csc_zenithazimuth
double precision look[3]
double precision latitude
double precision longitude
double precision altitude
integer zenithonlyflag
integer refractflag
double precision zenith
double precision azimuth
double precision refraction
integer vectortag,returnstatus

 vectortag = pgsd_look
latitude = 0.2D0
longitude = -0.3D0

 6-505 333-EED-001, Revision 02

altitude = 0.0D0
zenithonlyflag = PGS_FALSE
refractflag = PGS_FALSE

 look[3] = -0.26;
look[2] = 0.0;
look[1] = sqrt(1 - look[3]*look[3]);

 returnstatus = pgs_csc_zenithazimuth(look,latitude,
 longitude,altitude,
 vectortag,
 zenithonlyflag,
 refractflag,zenith,
 azimuth,refraction)

C do some error handling

C if desired, convert zenith and azimuth to degrees

NOTES: The vectorECR vector must be in ECR coordinates. For celestial bodies, it
is the vector from Earth to the celestial body. It can be obtained by getting
the ECI vector to the body from PGS_CBP_Earth_CB_Vector(), and
transforming that vector to ECR rectangular coordinates with
PGS_CSC_ECItoECR().

The "look vector" (which could as well be called the "boresight vector") is
an ECR vector from the instrument to the point being viewed)"look
point."). To obtain the zenith and azimuth of the look vector, the
vectorTag must be set to PGSd_LOOK (this allows for the reversed sense
of such a vector, which represents a line of sight above the horizon when
pointing down). If desired, the unit look vector can be obtained and saved
from PGS_CSC_GetFOV_Pixel(); this will achieve very good
performance, as the ECR look vector is calculated there. If the ECR look
vector has to be constructed (for example, when starting with already-
geolocated data), this can be done, for example, as follows: Convert the
latitude, longitude and altitude of the look point to ECR rectangular
coordinates with PGS_CSC_GEOtoECR(). Then obtain the ECI spacecraft
position from PGS_CSC_Ephem_Attit(), and convert it to ECR with
PGS_CSC_ECItoECR(). Finally, subtract the last result from the first. The
geometry is illustrated in Fig 6-4:

 6-506 333-EED-001, Revision 02

.

SS

L SC

N

S

to Sun Vel

EC

Pos

Look

Detail at
point L

North

Es

Z

ok
 v

ec

To Sun

a

SC

geodetic
zenith

L
p

n

pdn/ 1996

geodetic
zenith

Z

}

- A s

Figure 6-4. Geometry of the Viewing and Sun Vectors

Notation:
SC = spacecraft
EC = Earth Center
Pos = position vector
Vel = velocity vector
SS = subsatellite point
L = Lookpoint
n = nadir angle
Es = elevation of the Sun = (π/2 - solar zenith angle).
p = projection of Sun vector on horizontal
As = solar azimuth. All azimuths are measured East from North
Z = zenith angle of look vector. a = azimuth of the Look vector.

Note that because of Earth curvature, generally Z > n. Also, in this
diagram m,n is referenced to geocentric, SS to geodetic, a small
difference. In other contexts, however, "nadir angle" could refer to the

 6-507 333-EED-001, Revision 02

angle between a direction and either geocentric, geodetic, or nominal
spacecraft nadir.

Note: In ECR coordinates, the Look Vector is also called the ECR Pixel
Vector, but in SC coordinates, it is called the SC Pixel Vector.

If the zenith and azimuth of a distant celestial body (such as the sun or a
planet) are desired, the user may supply PGSd_CB or any of the
identifiers: PGSd_SUN, PGSd_MERCURY, PGSd_VENUS,
PGSd_MARS, PGSd_JUPITER, PGSd_SATURN, PGSd_URANUS,
PGSd_NEPTUNE, or PGSd_PLUTO. This is purely a convenience for
users doing other calculations with a CB identifier; the action of the
function is in all cases the same—it finds the zenith and azimuth of the
vector at the look point, without regard to parallax (i.e., the vector from
Earth center to the Celestial body is regarded as unchanged due to the
displacement of the look point from Earth center).

 In the case of the PGSd_MOON, the geocentric parallax is appreciable,
meaning that its apparent position is, in general, different as viewed from
Earth center or from the look point. The difference can be as large as a
degree. Therefore, in this case, a parallax correction is made. It is essential,
in this case, of course, that the PGSd_MOON vector be supplied in meters.
In this case, the input vector should be the Earth to PGSd_MOON vector
defined from Earth center (geocentric), as obtained, for example, from the
PGS_CBP_Earth_CB_Vector() tool.

 In all other cases, the input vector can be in any units, including
normalized (unit vector).

 Users wishing to take into account the minuscule parallax correction for
the sun, or the correction for some other chosen body such as an asteroid,
could simply label the vector as PGSd_MOON. (For the sun, the
correction is only ~ 2.5 millidegrees.)

 Refraction by the atmosphere is calculated if the flag is set to PGS_TRUE.
This calculation approximately corrects, in the visual band, for the fact
that any line of sight, such as the sun, moon, or look vector is bent by the
atmosphere.

 If the vector is well below the horizon, a warning is returned and no
azimuth calculation is done. The present algorithm is fairly forgiving for
points slightly below the horizon (to 96 degrees), in order that the user
interested in the location of the glow before sunrise or after sunset can find
its azimuth; it is user responsibility to take special action between 90
degrees and 96 degrees if these data are not wanted.

 6-508 333-EED-001, Revision 02

 The altitude is required only if refraction is to be calculated, and its only
effect is to change the mean density of the atmosphere in the refraction
function.

 If the zenith only flag is defined by the user to be PGS_TRUE the function
will run faster but will not calculate the azimuth.

 If the azimuth is requested but the zenith angle is < 0.026 deg, it is deemed
that the azimuth calculation is unreliable, because variations in the local
vertical as determined from the geoid, and variable refraction in the
atmosphere dominate at that level. The azimuth is returned as 0.0 and the
warning PGSCSC_W_UNDEFINED_AZIMUTH is returned

 The calculation herein is entirely independent of the Earth model except
for the parallax correction, where WGS84 is assumed, and any difference
in other models introduces negligible error. The use of geodetic latitude as
input guarantees that the rest of the algorithm is independent of Earth
model.

REQUIREMENTS: PGSTK–1091

 6-509 333-EED-001, Revision 02

Find Point of Closest Miss and Surface Point

NAME: PGS_CSC_GrazingRay()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_GrazingRay(
 char earthEllipsTag[50],
 PGSt_double posECR[3],
 PGSt_double ray[3],
 PGSt_double *latitude,
 PGSt_double *longitude,
 PGSt_double *missAltitude,
 PGSt_double *slantRange,
 PGSt_double posNEAR[3],
 PGSt_double posSURF[3])

FORTRAN: include 'PGS_SMF.f'
include 'PGS_CSC_4.f'

 integer function pgs_csc_grazingray(
 earthellipstag,pos,ray,latitude,longitude,
 missaltitude,slantrange,posnear,possurf)

 character*49 earthellipstag
double precision posecr(3)
double precision ray(3)
double precision latitude
double precision longitude
double precision missaltitude
double precision slantrange
double precision posnear(3)
double precision possurf(3)

DESCRIPTION: For rays that miss Earth limb, this function finds the nearest miss point on
the ray and the corresponding surface point. For rays that strike the Earth,
it finds instead the midpoint of the chord of the ray within the ellipsoid
and the surface point of intersection nearest the observer.

 6-510 333-EED-001, Revision 02

INPUTS:

Table 6-249. PGS_CSC_GrazingRay Inputs
Name Description Units Min Max

earthEllipsTag tag selecting Earth ellipsoid
model (default is WGS84)

N/A N/A N/A

posECR ECR Spacecraft Position meters N/A see NOTES
ray[3] unit vector along the line of

sight, in ECR coordinates
N/A -1 per component +1 per component

OUTPUTS:

Table 6-250. PGS_CSC_GrazingRay Outputs
Name Description Units Min Max

latitude geodetic latitude of posNEAR (q.v. below) radians -pi/2 pi/2
longitude longitude of posNEAR (q.v. below) radians -pi pi
missAltitude altitude of posNEAR (q.v. below) meters N/A N/A
slantRange range to posNEAR (q.v. below) m/s -7000 7000
posNEAR[0] X coordinate (in ECR) of the point on ray

nearest to the ellipsoid (when ray misses);
when ray hits, this point is defined to be
midpoint of the ray chord within the ellipsoid
(see NOTES)

meters N/A N/A

posNEAR[1] Y coordinate (in ECR) of the point on ray
nearest to the ellipsoid (when ray misses);
when ray hits, this point is defined to be
midpoint of the ray chord within the ellipsoid
(see NOTES)

meters N/A N/A

posNEAR[2] Z coordinate (in ECR) of the point on ray
nearest to the ellipsoid (when ray misses);
when ray hits, this point is defined to be
midpoint of the ray chord within the ellipsoid
(see NOTES)

meters N/A N/A

posSURF[0] X coordinate (in ECR) of the point on Earth
closest to the ray (when the ray misses Earth
limb) or where the ray first strikes the Earth
ellipsoid, (in the case that it does not miss)

meters N/A, but
normally <
6378140

N/A, but
normally >
-6378140

posSURF[1] Y coordinate (in ECR) of the point on Earth
closest to the ray (when the ray misses Earth
limb) or where the ray first strikes the Earth
ellipsoid (in the case that it does not miss)

meters N/A, but
normally <
6378140

N/A, but
normally >
-6378140

posSURF[2] Z coordinate (in ECR) of the point on Earth
closest to the ray (when the ray misses Earth
limb) or where the ray first strikes the Earth
ellipsoid (in the case that it does not miss)

meters N/A, but
normally <
6378140

N/A, but
normally >
-6378140

 6-511 333-EED-001, Revision 02

RETURNS:

Table 6-251. PGS_CSC_GrazingRay Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_SUBTERRANEAN User provided a subterranean position for the spacecraft
PGSCSC_W_HIT_EARTH Line of Sight struck the Ellipsoid
PGSCSC_W_LOOK_AWAY Line of sight points away from Earth
PGSCSC_W_ERROR_IN_GRAZINGRAY Generic return for warning in lower level function
PGSCSC_W_SPHERE_BODY Using a spherical Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater than 0.01
PGSCSC_W_DEFAULT_EARTH_MODEL Default Earth model was used - user's model not found
PGSCSC_W_ZERO_PIXEL_VECTOR Zero length ray vector supplied (terminates execution)
PGSCSC_E_BAD_EARTH_MODEL Equatorial or polar radius less than or equal to 0.0 or the

model defines a prolate Earth
PGS_E_TOOLKIT Something unexpected happened—execution aborted

EXAMPLES:1
C: #include <PGS_CSC.h>
 PGSt_SMF_status returnStatus

 char earthEllipsTag[50];
 PGSt_double posECR[3];
 PGSt_double ray[3];
 PGSt_double latitude;
 PGSt_double longitude;
 PGSt_double missAltitude;
 PGSt_double slantRange;
 PGSt_double posNEAR[3];
 PGSt_double posSURF[3];

 strcpy(earthEllipsTag,"GEM-10B");
 posECR[0] = 4077000.0;

 posECR[1] = 5000000.0;
 posECR[2] = -3200000.0;

 ray[0] = 0.0002;
 ray[1] = -1.0;
 ray[2] = -0.422;

 returnStatus = PGS_CSC_GrazingRay(
 earthEllipsTag,posECR,ray,&latitude,&longitude,
 &missAltitude,&slantRange, posNEAR,
 posSURF);

1 Note: As is Toolkit standard, to avoid possible interface problems to outside software that may support different
word lengths, the Toolkit renormalizes all unit input vectors at the same time it checks for zero length input vectors.
Therefore the inputs shown here are unnormalized.

 6-512 333-EED-001, Revision 02

 printf("Longitude %f\n",longitude);
 printf("Latitude: %f\n",latitude);
 printf("Altitude: %f\n",missAltitude);
 printf("Slant Range: %f\n",slantRange);

 if(returnStatus == PGS_S_SUCCESS)
 {
 printf("Point on Ray Nearest Earth: %f, %f, %f\n",
 posNEAR[0],posNEAR[1],posNEAR[2]);
 printf("Point on Surface Nearest Ray: %f, %f, %f\n",
 posSURF[0],posSURF[1],posSURF[2]);
 }
else if(returnStatus == PGSCSC_W_HIT_EARTH)
 {
 printf("Midpoint of Ray Chord in Earth: %f, %f, %f\n",

 posNEAR[0],posNEAR[1],posNEAR[2]);
 printf("Line of Sight Strikes Earth at: %f, %f, %f\n",
 posSURF[0],posSURF[1],posSURF[2]);
 }
else
 {
 ** test errors,
 take appropriate
 action **
 }

FORTRAN:
 include 'PGS_SMF.f'

include 'PGS_CSC_4.f'
 implicit none

integer pgs_csc_grazingray
integer returnstatus
character*19 earthellipstag
double precision posecr(3)
double precision ray(3)
double precision latitude
double precision longitude
double precision missaltitude
double precision slantrange
double precision posnear(3)
double precision possurf(3)

 posecr(1) = 4077000.0

posecr(2) = 5000000.0
posecr(3) = -3200000.0
ray(1) = -0.0002
ray(2) = -1.0
ray(3) = -0.422
returnstatus = pgs_csc_grazingray(
earthellipstag,posecr,ray,latitude,longitude,
 missaltitude,slantrange, posnear,
 possurf)

 print*,'Longitude: ',longitude
print*,'Latitude: ',latitude
print*,'Slant Range: ',slantrange
print*,'Altitude: ',missaltitude

 if(returnStatus .eq. PGS_S_SUCCESS) then
C ampersands & below are continuation marks in column

 6-513 333-EED-001, Revision 02

 print*,'Point on Ray Nearest Earth: X = ',
 posnear(1),' Y = ',posnear(2),' Z = ', posnear(3)
 print*,'Point on Surface Nearest Ray: X = ',
 & possurf(1),' Y = ',possurf(2),' Z = ', possurf(3)
 else if (returnStatus .eq. PGSCSC_W_HIT_EARTH) then
 print*,'Midpoint of Ray Chord in Earth: X = ',
 &posnear(1),' Y = ',posnear(2),' Z = ', posnear(3)
 print*,'Line of Sight Strikes Earth at: X = ',
 &possurf(1),' Y = ',possurf(2),' Z = ', possurf(3)
 else
C ** test errors, take appropriate action **
 endif
 print*,err,msg

NOTES: For a line of sight ("ray") that misses Earth limb, this tool calculates the
rectangular coordinates of the point Q of closest approach to the Earth and
the slant range to Q. It also obtains the latitude and longitude of the surface
point P nearest Q (and therefore nearest to the ray) and the geodetic
altitude of Q above P (Q and P have the same longitude and geodetic
altitude). When the ray, instead, intersects the Earth ellipsoid, the
rectangular coordinates of Q are replaced by those of a point halfway
between the two "pierce points" where the ray intersects the ellipsoid. The
intent is to provide a point with the nearly the same latitude and longitude
as the point closest to the Earth's surface on a ray from a background
object (such as the Sun) that is actually refracted round the Earth. When
the ray intersects the Earth, the latitude and longitude of P are also
replaced by those of the nearest pierce point, i.e. where the instrument is
looking, and the slant range is replaced by the range to that point.
Furthermore, the return value PGSCSC_W_HIT_EARTH issues. If the
ray, instead, points away from the Earth ellipsoid, the altitude output
variable is set to PGSd_GEO_ERROR_VALUE and the return value to
PGSCSC_W_LOOK_AWAY, in either case - ray missing the ellipsoid or
ray striking it. The return PGSCSC_W_ZERO_PIXEL_VECTOR
terminates execution, even though it is a "warning" level only; the
"warning" status was defined for this message to support certain tools that
process arrays of pixels at once, in order that if a few pixel vectors were
bad, the remainder could be processed. The same return is reused here,
but promoted to have a fatal result.

 If an invalid earthEllipsTag is input, the program will use the WGS84
Earth model by default.

REQUIREMENTS: PGSTK-1085

6.3.4.11 CSC Functions

PGS_CSC_DayNight

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

 6-514 333-EED-001, Revision 02

PGS_CSC_ECItoECR

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_ECItoORB

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_ECItoSC

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_ECRtoECI

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_ECRtoGEO

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_EarthOccult

Test for earth occultation of a celestial body in the field of view. The test is in three phases. The
first phase does not depend on the CB at all - it is just a check if the Earth fills the field of view.
The second test (exercised only if the first fails to find total occultation) determines if the
celestial body is behind the Earth. If the second test fails, the vector in SC coordinates that points
at the part of the CB most distant from the Earth center is returned so that the calling function
can determine if the Earth's bulge (difference in radius over that of an inscribed sphere) occults
the CB.

PGS_CSC_Earthpt_FixedFOV

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_Earthpt_FOV

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_EulerToQuat

Transforms Euler angles to Quaternions.

PGS_CSC_FOVconicalHull

A circular cone is drawn around the FOV and a check is made as to whether the candidate point
is inside it before going any further. The function has two purposes:

a. it will speed up tasks by obviating complicated algorithms for points well away from the
FOV

b. it will enable detection and rejection of FOV specifications outside our present
algorithmic limits. [Present software does not reliably handle fields of view more than
180 degrees across.]

 6-515 333-EED-001, Revision 02

PGS_CSC_GEOtoECR

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_GetEarthFigure

This tool gets the equatorial and polar radii from the earthfigure.dat file for the earth model input.

PGS_CSC_GetFOV_Pixel

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_GreenwichHour

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_J2000toTOD

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_LookPoint

Solves the look point equation. method:

Solve the quadratic equation

x = p + d*u

where x must lie on an ellipsoid, for the slant range, d, corresponding to the intersection of the
extended look vector, u, with the surface of the earth. Then compute x directly.

PGS_CSC_Norm

This tool computes the norm of a 3-vector.

PGS_CSC_ORBtoECI

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_ORBtoSC

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_PointInFOVgeom

For each input point, the function does the processing to determine if a point is in the field of
view and returns a flag indicating whether the point is in the field of view.

PGS_CSC_QuatToEuler

This function gets Euler angles from a quaternion.

PGS_CSC_SCtoECI

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

 6-516 333-EED-001, Revision 02

PGS_CSC_SCtoORB

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_SpaceRefract

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_SubSatPoint

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_SubSatPointVel

This tool finds the North and East components of the velocity of the subsatellite point and the
rate of change of spacecraft altitude.

PGS_CSC_TODtoJ2000

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_TiltYaw

Obtains the tipped orbital (geodetic nadir) to orbital transformation quaternion.

PGS_CSC_UT1_update

updates the file “utcpole.dat”

PGS_CSC_UTC_UT1Pole

This tool accesses the file 'utcpole.dat' and extracts using interpolation the x,y pole postion in
seconds of arc and the difference of UT1 and UTC, given an input Julian date.

PGS_CSC_ZenithAzimuth

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_crossProduct

Cross product of vectors

PGS_CSC_dotProduct

Dot product of vectors

PGS_CSC_getECItoORBquat

This function returns a quaternion describing the rotation from the Earth Centered Inertial (ECI)
reference frame to the Orbital (ORB) reference frame. That is the quaternion returned will
transform a vector in the ECI frame to the equivalent vector in the ORB frame.

 6-517 333-EED-001, Revision 02

PGS_CSC_getORBtoECIquat

This function returns a quaternion describing the rotation from the Orbital (ORB) reference
frame to the Earth Centered Inertial (ECI) reference frame. That is the quaternion returned will
transform a vector in the ORB frame to the equivalent vector in the ECI frame.

PGS_CSC_getQuats

Converts a transformation matrix to a quaternion

PGS_CSC_nutate2000

This tool transforms a vector under nutation between Mean Celestial Coordinates of date in
Barycentric Dynamical Time (TDB) and True Celestial Coordinates of date.

PGS_CSC_precs2000

This tool precesses a vector from Mean Celestial Coordinates of date in Barycentric Dynamical
Time (TDB) to J2000 coordinates or from J2000 coordinates to Mean Celestial Coordinates of
date in Barycentric Dynamical Time (TDB).

PGS_CSC_quatMultiply

This file contains the function PGS_CSC_quatMultiply(). This function multiplies two
quaternions, using a short algorithm with 11 multiplications and 19 additions.

PGS_CSC_quatRotate

This function transforms a vector from one coordinate system to a rotated coordinate system with
a common origin, where the rotation is defined by a quaternion.

PGS_CSC_quickWahr

Wahr nutation with extrapolation for up to 1/2 hour (valid to microseconds of arc)

PGS_CSC_wahr2

Calculates nutation angles delta psi and delta epsilon, and their rates of change, referred to the
ecliptic of date, from the Wahr series.

6.3.5 Geo–Coordinate Transformation Tools

The geo–coordinate transformation tools are required to support the bi–directional transformation
between geographic coordinates and various standard map projection frames. The tools are
designed to give rapid coordinate transformations for many points. The tool provides
transformations from geodetic latitude and longitude as output from the geolocation tool into the
required map projection frames.

There are initialization routines for each set of transformations (PGS_GCT_Init). PGS_GCT_Init
routine is used to “save” in memory the projection parameters and to pre–calculate any variables
that are required in all subsequent transformations. Following the initialization of a projection

 6-518 333-EED-001, Revision 02

there are routines for the forward and reverse transformations combined into a single interface
(PGS_GCT_Proj).

The tool may be used to perform many transformations in different projections within the same
executable program. If the same projection is required twice to perform transformations with two
different sets of parameters, then the initialization routine has to be called before each set of
transformations.

Every effort should be made to standardize projection definitions throughout the project to enable
data sets to be generated in a consistent manner.

In addition to the standard transformations of latitude and longitude to map projection specific
transformations from one projection to another are required, these are treated in a similar manner
as discussed below.

The tool is based on the commonly available packages general cartographic transformation
package (GCTP) for coordinate transformation; this package is based on the projections
described by Snyder. Map Projections—A Working Manual—J.P. Snyder, USGS professional
paper 1395, 1987.

 6-519 333-EED-001, Revision 02

Initialize Given Projection Parameters

NAME: PGS_GCT_Init()

SYNOPSIS:

C: #include <PGS_GCT.h>

 PGSt_SMF_status
PGS_GCT_Init(
 PGSt_integer projId,
 PGSt_double projParam[],
 PGSt_integer directFlag)

FORTRAN: include "PGS_GCT.f"
include "PGS_GCT_12.f"
include "PGS_SMF.f"

 integer function pgs_gct_init(projid, projparam, directflag)
 integer projid
 double precision(30) projparam
 integer directflag

DESCRIPTION: This tool provides a general interface to perform geo–coordinate
transformations in the forward/inverse directions. In general the tool
requires a projection id, location of input data vectors and the direction of
the conversion. PGSd_UTM projection is a special case for which zone
value is also needed to define a point.

INPUTS:

Table 6-252. PGS_GCT_Init Inputs
Name Description Units Min Max

projId projection code none 1 #defined
projParam projection parms rad, m if latitude

if longitude
-90(PI/180)
-PI

90(PI/180)
PI

directFlag forward/inverse none PGSd_GCT_FORWARD PGSd_GCT_INVERSE

OUTPUTS: None

 6-520 333-EED-001, Revision 02

RETURNS:

Table 6-253. PGS_GCT_Init Returns
Return Description

PGS_S_SUCCESS
PGSGCT_E_NO_DATA_FILES Data files for state plane could not be found
PGSGCT_E_GCTP_ERROR Error has occurred in the GCTP lib
PGSGCT_E_BAD_INC_ANGLE Invalid inclination angle in the Space Oblique

Mercator (SOM) projection
PGSGCT_E_BAD_RADIUS Invalid radius
PGSGCT_E_BAD_MINOR_AXIS Invalid minor radius
PGSGCT_E_MINOR_GT_MAJOR Minor radius is greater than major radius
PGSGCT_E_BAD_LONGITUDE Invalid longitude
PGSGCT_E_BAD_LATITUDE Invalid latitude
PGSGCT_E_BAD_DIRECTION Invalid direction
PGSGCT_E_INVD_SPCS_SPHEROID Invalid State Plane Coordinates Spheroid

(SPCS)
PGSGCT_E_INVD_PROJECTION Invalid Projection

EXAMPLES: NONE (see example for PGS_GCT_Proj())

NOTES: This routine simply initializes the parameters required by a particular
projection. The user is referred to the following appendices for further
details

 Projection List—Appendix G
Parameter List and Use—Appendix G
Spheroid List—Appendix G (State Plane Projection only)

 Following steps should be taken if a new projection is to be added to the
projection library:

 Step 1—archive new code to the projection library

 Step 2—define projection code for the new projection in proj.h

 Step 3—increment the value of MAXPROJ by one in proj.h

 Step 4—add calls to the forward and inverse initialization routines
at the end of this file.

 Parameters 0 and 1 are reserved for major axis and minor axis respectively

 Parameter 4 is reserved for longitude values only.

 Parameter 5 is reserved for latitude values only.

 Parameters 6 and 7 are reserved for false easting and northing values only.

 6-521 333-EED-001, Revision 02

 IMPORTANT All blank array elements are set to zero by the user

 Latitude and longitude ranges are as defined in the input section above.
The routine checks the longitude value as -PI <= longitude <= PI and
latitude as -PI/2 <= latitude <=PI/2. The value of PI is defined as
3.141592653589793238 which is available to the user

 State Plane Projection is not available in the Toolkit.
REQUIREMENTS: PGSTK–1500, PGSTK–1502

 6-522 333-EED-001, Revision 02

Transforms Geographical Coordinates into Cartesian Coordinates
and Vice Versa for the Given Projection

NAME: PGS_GCT_Proj()

SYNOPSIS:
C: #include <PGS_GCT.h>

 PGSt_SMF_status PGS_GCT_Proj(
 PGSt_integer projId,
 PGSt_integer directFlag,
 PGSt_integer nPoints,
 PGSt_double longitude[],
 PGSt_double latitude[],
 PGSt_double mapX[],
 PGSt_double mapY[],
 PGSt_integer zone[]);

FORTRAN: include "PGS_GCT.f"
include "PGS_GCT_12.f"

 integer function pgs_gct_init(projid, directflag, npoints, longitude,
 latitude, mapx, mapy, zone)
 integer projid
 integer directflag
 integer npoints
 double precision longitude(*)
 double precision latitude(*)
 double precision mapx(*)
 double precision mapy(*)
 double precision zone(*)

DESCRIPTION: This tool provides a general interface to perform geo–coordinate
transformations in the forward/inverse directions. In general the tool
requires a projection id, location of input data vectors and the direction of
the conversion. PGSd_UTM projection is a special case for which zone
value is also needed for inverse transformations. Forward PGSd_UTM
transformations return zone values as output.

 6-523 333-EED-001, Revision 02

INPUTS:

Table 6-254. PGS_GCT_Proj Inputs
Name Description Units Min Max

projId projection code none 1 #defined
directFlag forward/inverse none PGSd_GCT_FORWARD PGSd_GCT_INVERSE
nPoints num. of points none 1 variable
longitude[] longitude values radians -PI +PI
latitude[] latitude values radians -PI +PI
mapX[] x cartesian coordinate

(see notes)
meters variable variable

mapY[] y cartesian coordinate
(see notes)

meters variable variable

zone[] UTM zones (negative
for southern
hemisphere)

none -60 60

OUTPUTS: See description

RETURNS:

Table 6-255. PGS_GCT_Proj Returns
Return Description

PGS_S_SUCCESS Successful return
PGSGCT_E_BAD_ZONE Invalid universal transverse mercator (UTM) zone
PGSGCT_E_BAD_DIRECTION Invalid direction
PGSGCT_E_INVD_PROJECTION Projection doesn't exists
PGSGCT_E_NO_POINTS Number of points less than one
PGSGCT_E_GCTP_ERROR Error in the GCTP library
PGSGCT_E_BAD_LONGITUDE Bad longitude value (out of range)
PGSGCT_E_BAD_LATITUDE Bad latitude value (out of range)
PGSGCT_W_INTP_REGION Interrupted region encountered

EXAMPLES:

C: #include "PGS_GCT.h"

 PGS_SMF_status retValue;
PGSt_double projParam[15] ;
PGSt_double latitude[4];
PGSt_double longitude[4];
PGSt_double mapX[4], mapY[4];

 6-524 333-EED-001, Revision 02

PGSt_integer ProjId = PGSd_UTM;
PGSt_integer nPoints = 4;
PGSt_integer directFlag, i;
PGSt_integer zone[4] = {0, 0, 0, 0};

 PGSt_integer cucFileId;

 /* All parameters must be initialized to zero */

 for (i = 0; i<15) i++)
{
 projParam[i] = 0;
}

 /* C array starts from 0 */

 for (i = 1; i<5) i++)
{
 longitude[i-1] = PI/i;
 latitude[i-1] = PI/4;
}
cucFileId = 10999;
retValue = PGS_CUC_cons(cucFileId,"CLRK80_MAJOR_AXIS",
&ProjParam[0]);
retValue = PGS_CUC_cons(cucFileId,"CLRK80_MINOR_AXIS",
&ProjParam[1]);
 ProjParam[5] = PI/2;
 ProjParam[6] = 3000000 /*(false easting in meters) */
 ProjParam[7] = 75000000 /* (false northing in meters)
*/

 directFlag = PGSd_GCT_FORWARD;
retValue = PGS_GCT_Init (projId, projParam, directFlag);
retValue = PGS_GCT_Proj(projId, directflag, nPoints,
 latitude, longitude, mapX, mapY, zone);

 directflag = PGSd_GCT_INVERSE; (cartesian to
 geographical)
retValue = PGS_GCT_Init (projId, projParam, directFlag);
retValue = PGS_GCT_Proj(projId, directflag, nPoints,
 latitude, longitude, mapX, mapY, zone);

FORTRAN: implicit none

 include "PGS_GCT.f"
include "PGS_GCT_12"
include "PGS_SMF.f"

 6-525 333-EED-001, Revision 02

 integer PGS_GCT_Proj
integer retValue
double precision projParam(15)
double precision latitude(4)
double precision longitude(4)
double precision mapX(4), mapY(4)
integer ProjId
integer nPoints
integer directFlag, i
integer zone(4)

 integer cucFileId

 ProjId = PGSd_UTM

 nPoints = 4

 C Projection parameters must be initialized to zero

 do 10 i= 1, 15

 projParam(i) = 0

 10 continue

 C FORTRAN array starts from 1

 do 20 i= 1, 4

 longitude(i) = PI/i
 latitude(i) = PI/4

 20 continue
cucFileId = 10999
pgs_cuc_cons(cucFileId,"CLRK80_MAJOR_AXIS", ProjParam(0));
pgs_cuc_cons(cucFileId,"CLRK80_MINOR_AXIS", ProjParam(1));
ProjParam(5) = PI/2

 C false easting in meters
ProjParam(6) = 3000000

 C false northing in meters
ProjParam(7) = 75000000

 directFlag = PGSd_GCT_FORWARD
retValue = PGS_GCT_Init (projId, projParam, directFlag)
retValue = PGS_GCT_Proj(projId, directflag, nPoint
 latitude, longitude, mapX, mapY, zone)

 C cartesian to geographical

 6-526 333-EED-001, Revision 02

 directflag = PGSd_GCT_INVERSE
pgs_gct_init (projId, projParam, directFlag)
pgs_gct_proj(projId, directflag, nPoints,
 latitude, longitude, mapX, mapY, zone)

NOTES: The units of output cartesian coordinates essentially depends on the units
used for the Earth's radii, false easting and northing, etc., in the parameters
list. The only requirement is that the units used should be consistent.

 The zones[] parameter is at present only used for UTM transformations.
It's an output parameter in the FORWARD direction and input parameter
in the INVERSE direction.

 All points are processed even if there is an error condition for some points.
If bad point(s) are encountered the routine returns
PGSd_GCT_IN_ERROR in the output vector. The user can find out the
offending input values by searching for the PGSd_GCT_IN_ERROR in
the output vector. For example, if the third point is in error then:

 Input Vector
Longitude 1, 2, 3, 4, 5
latitude 1, 1, 1, 1, 1

 Output Vector
X .01, .02, PGSd_GCT_IN_ERROR, .04, .05
Y .1, .2. PGSd_GCT_IN_ERROR, .4, .5

 For the inverse transformations, two projections, namely Interrupted
Goode and Interrupted Mollweide sometimes encounter a point that is in
an interrupted region. In such cases the tool does not abandon processing
but puts a value PGSd_GCT_IN_BREAK in the output vector. At the end
of processing the tool returns a warning that an Interrupted region was
encountered. The user can find out the offending input values by searching
for the PGSd_GCT_IN_BREAK in the output vector. For example, if the
third point is in the interrupted region:

 Input Vector
X 1, 2, 3, 4, 5
Y 1, 1, 1, 1, 1

 Output Vector
Longitude .01, .02, PGSd_GCT_IN_BREAK, .04, .05
latitude .1, .2. PGSd_GCT_IN_BREAK, .4, .5

REQUIREMENTS: PGSTK–1500, 1502

 6-527 333-EED-001, Revision 02

6.3.6 Math and Statistical Support Tools

IMSL has been selected to provide a suite of standard mathematical manipulation functions in a
uniform package. This package is available to SCF and DAAC facilities through the EDHS
server. Usage of the functionality supplied by the math package will not be mandatory and user
developed or shareware routines may be included in science processing software. Users will be
responsible for the functionality and long term maintenance of their homegrown software. IMSL
service will be provided gratis.

We note that internal Toolkit software does not depend on IMSL.

6.3.7 Constants and Unit Conversions

6.3.7.1 Introduction

The constants and unit conversion tools provide a means to access commonly used mathematical
and physical constants, and a coherent means to perform unit conversions and parameter
translations.

When the units conversion required is a linear conversion (e.g., degrees to radians) the most
efficient mechanism for the programmer is to be given access to a physical constant that
describes that transformation and then for the programmer to use this as appropriate. Providing a
calling routine to perform the transformation would be inappropriate to most unit conversions
and therefore specific API’s for this are not provided.

6.3.7.2 Requirements Compliance
a. PGSTK–1521 states that the Toolkit shall provide a means of accessing constant values

related to an instrument. Constants that relate to instrument parameters are treated as
ancillary data (static internal and dynamic internal) to the algorithms. The mechanism for
retrieving instrument ancillary data is described elsewhere in section 6.2.1.6; this
requirement is fulfilled by that tool.

b. An external file using some standard parameter=value mechanism will be used to store
the mathematical and physical constants, in a similar way as performed in the ancillary
data access tools. In this way the values are capable of adjustment without recompilation
(requirement PGSTK–1522)

c. PGSTK–1531 states that unit conversion tools shall transform multiple values in a single
call. As described above, the most efficient way for the programmer to perform unit
conversions is to be given access to the conversion factor, which will be provided by the
following tool. This requirement is therefore redundant.

 6-528 333-EED-001, Revision 02

Obtain a Value for a User Specified Constant

NAME: PGS_CUC_Cons

SYNOPSIS:

C: #include <PGS_CUC.h>

 PGSt_SMF_Status
PGS_CUC_Cons (
 PGSt_integer inpfileid,
 char *inpParameter,
 PGSt_double *outvalue)

FORTRAN: include 'PGS_CUC_11.f'
include 'PGS_SMF_.f'

 integer function PGS_CUC_Cons (inpfileid, inpParameter, outvalue)
 integer inpfileid,
 character inpParameter,
 double precision outvalue)

DESCRIPTION: This routine receives the fileid and the constant name from the user. The
fileid allows more than one input file to be used, thus allowing the user to
implement his or her own specialized input files with constants. The
parameter is a character string representing the constant whose numerical
value is sought by the user. The resulting value is passed back to the user.

INPUTS:

Table 6-256. PGS_CUC_Cons Input
Name Description Units Min Max

fileid file identifier N/A N/A N/A
parameter constant wanted N/A N/A N/A

OUTPUTS:

Table 6-257. PGS_CUC_Cons Output
Name Description Units Min Max

value constant value N/A N/A N/A

 6-529 333-EED-001, Revision 02

RETURNS:

Table 6-258. PGS_CUC_Cons Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCUC_E__ERROR error in finding the constant value
The following are returned to the error log:
PGSCUC_E_CANT_GET_FILE_ID
PGSCUC_E_CANT_OPEN_INPUT_FILE
PGSCUC_E_AGG_CANT_BE_INSERTED
PGSCUC_E_READLABEL_PARSE_ERROR
PGSCUC_E_PARAMETER_INVALID
PGSCUC_E_FIRST_NODE_NOT_FOUND

EXAMPLES:

C: char parameter[] = {"PI"};
int fileid = 19701;
double result;

 ret_status = PGS_CUC_Cons(parameter, fileid, result);

FORTRAN: implicit none

 include 'PGS_CUC_11.f'
include 'PGS_SMF.f'

 integer pgs_CUC_cons
integer ret_status
integer inpfileid
character*100 inpParameter
double precision outvalue
inpfileid = 10790
inpParameter = 'pi'

 ret_status = pgs_cuc_cons(inpfileid, inpParameter, outvalue)
ret_value = PGS_CUC_get_parameter(“pi”, pi)

NOTES: User defines key word to be searched for within a logical file. User also
defines fileid so that location of file can be found. Tool uses ODL libraries
to conduct a parameter equals value search. For further information see
Constant and Unit Conversions (CUC) Tools Primer, Object Description
Language (ODL) documentation.

REQUIREMENTS: PGSTK–1520, PGSTK–1521, PGSTK–1522, PGSTK–1530

 6-530 333-EED-001, Revision 02

Obtain Slope and Intercept to Calculate Conversion Between
Specified Units

NAME: PGS_CUC_Conv

SYNOPSIS:

C: #include <PGS_CUC.h>

 PGSt_SMF_Status
PGS_CUC_Conv (
 char inpUnit[],
 char outUnit[],
 PGSt_double *outSlope,
 PGSt_double *outIntercept)

FORTRAN: include 'PGS_CUC_11.f'
include 'PGS_SMF.f'

 integer function PGS_CUC_Conv(inpUnit, outUnit, outSlope,
 outIntercept)
 character*100 inpunit,
 character*100 outunit,
 pgst_double outslope,
 pgst_double outintercept)

DESCRIPTION: This routine receives two character descriptions of Units as inputs. The
first input is the unit that the user has; the second input being the unit the
user wants to transform to. Both Unit descriptions are held in a file, after a
search identifies whether each unit is held within the file the slope and
intercept of the conversion between units is calculated. The resulting
values for slope and intercept are then passed back to the user.

INPUTS:

Table 6-259. PGS_CUC_Conv Inputs
Name Description Units Min Max

inpUnit unit you have N/A N/A N/A
outUnit unit you want N/A N/A N/A

 6-531 333-EED-001, Revision 02

OUTPUTS:

Table 6-260. PGS_CUC_Conv Outputs
Name Description Units Min Max

outSlope mathematical slope N/A N/A N/A
outIntercept mathematical intercept N/A N/A N/A

RETURNS:

Table 6-261. PGS_CUC_Conv Returns
Return Description

PGS_S_SUCCESS Successful return
PGS_E_CUC_ERROR error in performing conversion match
The following are returned to the error log:
PGSCUC_E_COULDNT_INIT_UDUNITS3
PGSCUC_E_DONT_KNOW_INP_UNIT
PGSCUC_E_DONT_KNOW_OUTP_UNIT
PGSCUC_E_UNITS_ARE_INCOMPATIBLE
PGSCUC_E_A_UNIT_IS_CORRUPTED

EXAMPLES:

C: char inpUnit[] = {"centigrade"};
char outUnit[] = {"fahrenheit"};
double *outSlope;
double *outIntercept;

 ret_status = PGS_CUC_Conv(inpUnit, outUnit, outSlope,
outIntercept);

FORTRAN: implicit none

 include 'PGS_CUC_11.f'
include 'PGS_SMF.f'

 integer PGS_CUC_Conv
integer ret_status
character*100 inpUnit
character*100 outUnit
double precision outSlope
double precision outIntercept
InpUnit = 'metres'
OutUnit = 'feet'
ret_status = pgs_cuc_conv(inpUnit, outUnit, outSlope,
> outIntercept)

 6-532 333-EED-001, Revision 02

NOTES: For further details on this tool, see Appendix I. Background on library
units used, Units available for conversion and adding own conversion
Units to the file.

REQUIREMENTS: PGSTK–1520, PGSTK–1521, PGSTK–1522, PGSTK–1530

(C) Copyright 1992 UCAR/Unidata

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose without fee is hereby granted, provided that the above copyright notice appears in all
copies, that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of UCAR/Unidata not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. UCAR
makes no representations about the suitability of this software for any purpose. It is provided "as
is" without express or implied warranty. It is provided with no support and without obligation on
the part of UCAR or Unidata, to assist in its use, correction, modification, or enhancement.

 6-533 333-EED-001, Revision 02

6.3.8 Dynamic Memory Management Tools

Allocate Memory

NAME: PGS_MEM_Malloc()

SYNOPSIS:

C: #include <PGS_MEM.h>

 PGSt_SMF_status
PGS_MEM_Malloc(
 void **addr,
 size_t numBytes);

FORTRAN: None

DESCRIPTION: This tool allocates an arbitrary number of bytes in memory.

INPUTS: numBytes—number of bytes to allocate

OUTPUTS: addr—pointer to beginning of address that has been allocated

RETURNS:

Table 6-262. PGS_MEM_Malloc Returns
Return Description

PGS_S_SUCCESS Success
PGSMEM_E_NO_MEMORY No memory space available for current process
PGSMEM_W_MEMORY_USED Memory address has been allocated previously

EXAMPLES: int i;
int *intPtr = (int *)NULL;
PGSt_SMF_status returnStatus;

 returnStatus = PGS_MEM_Malloc((void
 **)&intPtr,sizeof(int)*10);
if (returnStatus == PGS_S_SUCCESS)
{
 for (i=0 ; i < 10 ; i++)
 {
 intPtr[i] = i;
 }
}

 6-534 333-EED-001, Revision 02

NOTES: This tool will control the amount of memory that may be allocated at any
one time. You should call PGS_MEM_Free() to free the memory
allocated once you are done using it; failure to do so may cause future
memory allocation requests to fail within the same process.

 Because the Toolkit memory functions track memory usage, it is
imperative that pointer variables, which have been freed, be initialized to
NULL prior to re–use. As a reminder, ALL local pointer variables MUST
be initialized to NULL prior to use. Failure to heed these warnings may
result in anomalous behavior within your process

REQUIREMENTS: PGSTK–1240

 6-535 333-EED-001, Revision 02

Allocate Memory

NAME: PGS_MEM_Calloc()

SYNOPSIS:

C: #include <PGS_MEM.h>

 PGSt_SMF_status
PGS_MEM_Calloc(
 void **addr,
 size_t num_elems,
 size_t elem_size);

FORTRAN: None

DESCRIPTION: This tool allocates an arbitrary number of bytes in memory. All bytes of
the allocated memory will be initialized to zero.

INPUTS: num_elems—number of elements

 elem_size—size of the element in bytes

OUTPUTS: addr—pointer to beginning address of the memory that has been allocated

RETURNS:

Table 6-263. PGS_MEM_Calloc Returns
Return Description

PGS_S_SUCCESS Success
PGSMEM_E_NO_MEMORY No memory space available for current process
PGSMEM_W_MEMORY_USED Memory address has been allocated previously

EXAMPLES: int i;
int *intPtr = (int *)NULL;
PGSt_SMF_status returnStatus;

 returnStatus = PGS_MEM_Calloc((void
 **)&intPtr,10,sizeof(int));
if (returnStatus == PGS_S_SUCCESS)
{
 for (i=0 ; i < 10 ; i++)
 {
 intPtr[i] = i;
 }
}

 6-536 333-EED-001, Revision 02

NOTES: This tool will control the amount of memory that may be allocated at any
one time. You should call PGS_MEM_Free() to free the memory
allocated once you are done with it; failure to do so may cause future
memory allocation requests to fail within the same process.

 Because the Toolkit memory functions track memory usage, it is
imperative that pointer variables, that have been freed, be initialized to
NULL prior to re–use. As a reminder, ALL local pointer variables MUST
be initialized to NULL prior to use. Failure to heed these warnings may
result in anomalous behavior within your process.

REQUIREMENTS: PGSTK–1240, PGSTK–1241

 6-537 333-EED-001, Revision 02

Re–Allocate Memory

NAME: PGS_MEM_Realloc()

SYNOPSIS:

C: #include <PGS_MEM.h>

 PGSt_SMF_status
PGS_MEM_Realloc(
 void **addr,
 size_t newsize);

FORTRAN: None

DESCRIPTION: This tool reallocates the number of bytes requested.

INPUTS: addr—pointer to the starting address of previously allocated memory

 newsize—new total memory size to reallocate

OUTPUTS: addr—pointer to starting address of newly allocated memory

RETURNS:

Table 6-264. PGS_MEM_Realloc Returns
Return Description

PGS_S_SUCCESS Success
PGSMEM_E_NO_MEMORY No memory space available for current process
PGSMEM_E_ADDR_NOTALLOC Address is not allocated previously

EXAMPLES: int i;
int *intPtr = (int *)NULL;
PGSt_SMF_status returnStatus;

 returnStatus = PGS_MEM_Calloc((void
 **)&intPtr,10,sizeof(int));
if (returnStatus == PGS_S_SUCCESS)
{
 for (i=0 ; i < 10 ; i++)
 {
 intPtr[i] = i;
 }
}

 6-538 333-EED-001, Revision 02

 returnStatus = PGS_MEM_Realloc((void
 **)&intPtr,sizeof(int)*20);
if (returnStatus == PGS_S_SUCCESS)
{
 # Realloc success #
}

NOTES: This tool will control the amount of memory that needs to be reallocated to
a pointer that has already been used to obtain an initial allocation of
memory through one of the available Toolkit routines. You should call
PGS_MEM_Free() to deallocate the memory once you are done using it;
failure to do so may cause future memory allocation requests to fail within
the same process.

 Because the Toolkit memory functions track memory usage, it is
imperative that pointer variables, that have been freed, be initialized to
NULL prior to re–use. As a reminder, ALL local pointer variables MUST
be initialized to NULL prior to use. Failure to heed these warnings may
result in anomalous behavior within your process.

REQUIREMENTS: PGSTK–1240

 6-539 333-EED-001, Revision 02

Initialize Memory to Zero

NAME: PGS_MEM_Zero()

SYNOPSIS:

C: #include <PGS_MEM.h>

 void
PGS_MEM_Zero(
 void *addr,
 size_t numBytes);

FORTRAN: None

DESCRIPTION: This tool initializes a memory block or structure to zero.

INPUTS: addr—beginning address of the memory block or structure

 numbytes—number of bytes

OUTPUTS: None

RETURNS: None

EXAMPLES: Typedef struct
{
 int i;
 char c;
 float f;
}TestStruct;

 TestStruct test
int *intptr = (int *)NULL
returnstatus returnstatus

 PGS_MEM_Zero(&test,sizeof(test));
returnstatus = PGS_MEM_Malloc((void
 **)&intPtr,sizeof(int)*10);
if (returnstatus == PGS_S_SUCCESS)
{
 PGS_MEM_Zero(intPtr,sizeof(intPtr)*10)
}

 PGS_MEM_Zero(s, sizeof(longint)*10);

REQUIREMENTS: PGSTK–1240

 6-540 333-EED-001, Revision 02

De–Allocate Memory

NAME: PGS_MEM_Free()

SYNOPSIS:

C: #include <PGS_MEM.h>

 void
PGS_MEM_Free(
 void *addr);

FORTRAN: None

DESCRIPTION: This tool deallocates memory that was previously allocated through the
use of a Toolkit allocation routine.

INPUTS: addr—address of previously allocated memory

OUTPUTS: None

RETURNS: None

EXAMPLES: int *intPtr = (int *)NULL;
returnStatus returnStatus;

 returnStatus = PGS_MEM_Malloc((void
 **)&intPtr,sizeof(int)*10);
if (returnStatus == PGS_S_SUCCESS)
{
 PGS_MEM_Free(intPtr);
 intPtr = (int *)NULL;
}

NOTE: Because the Toolkit memory functions track memory usage, it is
imperative that pointer variables, which have been freed, be initialized to
NULL prior to re–use. As a reminder, ALL local pointer variables MUST
be initialized to NULL prior to use. Failure to heed these warnings may
result in anomalous behavior within your process.

REQUIREMENTS: PGSTK–1240

 6-541 333-EED-001, Revision 02

De–Allocate Memory

NAME: PGS_MEM_FreeAll()

SYNOPSIS:

C: #include <PGS_MEM.h>

 void
PGS_MEM_FreeAll(
 void);

FORTRAN: None

DESCRIPTION: Deallocates all memory that was previously allocated through the use of
Toolkit allocation routines, within an executable. Calls to
PGS_MEM_Free() and PGS_MEM_FreeAll() may be interlaced.

INPUTS: None

OUTPUTS: None

RETURNS: None

EXAMPLES: typedef struct
{
 int i;
 char c;
 float f;
}TestStruct;

 TestStruct *test = (TestStruct *)NULL;
int *intPtr = (int *)NULL;

 PGS_MEM_Malloc((void **)&intPtr,sizeof(int)*10);
PGS_MEM_Malloc((void **)&test,sizeof(TestStruct)*10);
PGS_MEM_FreeAll();

 test = (TestStruct *)NULL
intPtr = (int *)NULL

NOTES: This tool should only be called near the end of processing, or when no
further allocation of dynamic memory will be required.

 Due to the comprehensive nature of this tool, all allocated memory
references, that have not yet been freed, will be disposed of. Because the
Toolkit memory functions track memory usage, it is imperative that
pointer variables, which have been freed, be initialized to NULL prior to

 6-542 333-EED-001, Revision 02

use. Failure to heed these warnings may result in anomalous behavior
within your process.

REQUIREMENTS: PGSTK–1240

6.3.9 Graphics Support Tools

These tools will support the analysis of graphics, quicklook and quality assurance (QA) data
output from science production processes. It is assumed that the exchange format of the data files
will be HDF, although specific graphics formats are TBD at the time of this document. These
tools will contain an image processing capability, which will be used in conjunction with the
math library chosen for the Toolkit (section 6.3.6), or with user supplied math functions. It is
expected that this functionality will be a subset of the data visualization capability supplied by
EOSVIEW, a package being developed to display EOS data structure.

 6-543 333-EED-001, Revision 02

This page intentionally left blank.

 6-544 333-EED-001, Revision 02

	6.3 SDP Toolkit Tools—Optional
	6.3.1 Digital Elevation Model Tools
	6.3.1.1 DEM Access Tools (HDF-based tools)

	6.3.2 Ancillary Data Tools
	6.3.2.1 Introduction

	6.3.3 Celestial Body Position Tools
	6.3.3.1 Celestial Body Position Tool Notes

	6.3.4 Coordinate System Conversion Tools
	6.3.4.1 Introduction
	6.3.4.2 Unit Vectors for Input
	6.3.4.3 Other Specialized Vectors and Terminology
	6.3.4.4 Altitudes; Altitude Warnings
	6.3.4.5 Lines of sight; visibility of points
	6.3.4.6 Ranges for variables
	6.3.4.7 Updating the UT1 and polar motion file
	6.3.4.8 Coordinate System Conversion Tool Notes
	6.3.4.9 Coordinate System Conversion Transformation Tools
	6.3.4.10 Coordinate System Conversion—Other Tools
	6.3.4.11 CSC Functions

	6.3.5 Geo–Coordinate Transformation Tools
	6.3.6 Math and Statistical Support Tools
	6.3.7 Constants and Unit Conversions
	6.3.7.1 Introduction
	6.3.7.2 Requirements Compliance

	6.3.8 Dynamic Memory Management Tools
	6.3.9 Graphics Support Tools

